

STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATION

MICHAEL F. EASLEY GOVERNOR

LYNDO TIPPETT SECRETARY

April 21, 2004

U.S. Army Corps of Engineers Wilmington Regulatory Field Office P.O. Box 1890 Wilmington, NC 28402-1890

ATTN.: Mr. David Timpy

NCDOT Coordinator

Dear Sir:

Subject: Response to USACE Comments for Application for Individual Section 404 and

401 permits for the US 17 widening from SR 1327/1410 north of Jacksonville to SR 1330/1439 south of Belgrade/Maysville in Onslow County, North Carolina Federal Aid Project No. NHF-17(7) State Project No. 8.T190301, WBS Element 34442.1.1

On February 12, 2003 the NCDOT applied for an Individual Section 404 permit and 401 water quality certification to fill 31.10 acres of wetlands and 774.27 feet of stream to construct the TIP Project R-2514A. On March 17, 2004 the USACE issued an official letter requesting more information so that they could complete their review of the proposed project. This letter will address the comments made in the official letter submitted by the USACE.

Corp Comment

1. The Environmental Assessment (EA) states that the total wetland impacts for the proposed project will be 25.57 acres. The permit application states the proposed wetland impacts are 31.10 acres but does not address the increase of 5.83 acres of wetland impacts. Please provide a tabular summary of the wetland impacts on a site by site basis that lists the estimated wetland impacts of the EA and the permit application. In addition, please provide the rationale for the differences in the wetland impacts at each site.

DOT Response

Total wetland impacts have increased since the original permit application was submitted from 31.10 acres to 32.18 acres. An additional 0.24 acres of excavation at site 16 was inadvertently left off of the summary sheet impacts. An additional 0.87 acres of impacts to wetlands are composed of the four-wetland impact sites that calculated using the Boussinesq 5% equation. The addition of the 0.87 acres of drainage impacts and 0.24 acres excavation at site 16 add up to more than 32.18. This discrepancy is due to rounding.

MAILING ADDRESS:

NC DEPARTMENT OF TRANSPORTATION
PROJECT DEVELOPMENT AND ENVIRONMENTAL ANALYSIS
1548 MAIL SERVICE CENTER
RALEIGH NC 27699-1548

TELEPHONE: 919-733-3141 FAX: 919-733-9794

WEBSITE: WWW.NCDOT.ORG

LOCATION:
TRANSPORTATION BUILDING
1 SOUTH WILMINGTON STREET
RALEIGH NC

The EA does not include a breakdown of wetland impacts on a site by site basis. Therefore, the NCDOT is unable to provide a table with a tabular summary of wetland impacts on a site by site basis that lists impacts in the EA compared with the permit application.

Impacts have also increased due to drainage impacts to wetlands that are now quantified as impacts but were not required at the time of the EA. The drainage impacts at sites 6, 12, 13 and 39 that were calculated using the Boussinesq 5% equation were not included in the original total and are now included in the total. Sites 3, 4A, 10, 16, 23, 24, 24A, 43, 51, 52 and 65 were also considered impacts due to drainage. These sites will have ditches running through the wetlands and due to the small size of these wetlands, NCDOT decided to quantify the entire wetland as an impact. The total amount of drainage impacts to wetlands on this project total 1.59 acres.

Project impacts have increased due to the widening of the proposed right of way. The impacts estimated in the EA were based on a 100-foot right of way, however the project will use a 180-200 foot right of way. Impacts have also increased because two new wetlands were added as part of the Wetland Delineation Update after the EA was finalized. Site 64A was not included as part of the original delineation. The wetland boundary for Site 6 was modified in September of 2003. Impacts at these two sites total 0.68 acres.

Corp Comment:

2. The total stream impacts for the proposed project have increased without rationale being provided in your permit application. In response to a request by the North Carolina Division of Water Quality (DWQ) for detailed information on the stream impacts of this project, the stream impacts described in the EA were clarified (FONSI, page 9) to state that the project crosses three intermittent and two perennial streams with a total stream impact of 610 linear feet (estimate is based on pipe lengths listed on Page 9, Table 4-9A). Based on the permit application, the total stream impacts associated with proposed project are 774.27 feet. The rationale of the apparent increase of 164.27 feet of stream impacts has not been addressed. Accordingly, please provide a tabular summary of the stream impacts on a site by site basis that list the stream impacts of the project described in the EA and proposed in the permit application.

DOT Response:

The EA does not include a breakdown of stream impacts on a site by site basis. Therefore, the NCDOT is unable to provide a table with a tabular summary of streams impacts on a site by site basis that lists impacts in the EA compared with impacts in the permit application. Impacts have increased due to the widening of the proposed right of way. The impacts estimated in the EA were based on a 100-foot right of way; however, the project will use a 180-200 foot right of way

Corp Comment:

3. Based on information in the permit application, it is not clear if the stream impacts associated with the proposed project are correct. In addition, the proposed compensatory mitigation for the unavoidable stream impacts may also be incorrect. Specifically, jurisdictional streams listed in Table 2, page 6 appear to conflict with those inspected by this office on July 21, 2003 and December 2, 2002. It is requested that Table 2 be supplemented to include the project station

number and all the streams, including ephemeral, intermittent, perennial, and non-jurisdictional, which exist on this project. Pending review of this information, another field meeting may be needed to confirm the jurisdictional stream determinations, stream impacts and required compensatory mitigation for stream impacts for this project.

DOT Response:

The September 2003 Wetland Delineation Report, including stream determinations and agency verifications, was reviewed to ensure that the impacts and mitigation requirements reported in the permit application are correct, and no discrepancies were found. All jurisdictional streams were identified during the wetland delineation and were verified by the USACE on July 31, 2003 and are included in the table below. There are no streams depicted on the USGS topography map or the Onslow County Soil Survey in the project area that have not been identified and verified. Since the July 2003 JD will not expire until July 2008, the NCDOT does not believe reverifications are necessary.

		Table	2 Revised -	Surface Wa	ter Impacts		
Site	Station	Stream	Mitigation	Fill in	Existing	DWQ	DWQ Index
	Number	Name and	Ratio	Streams	Channel	Class	number
		Intermittent		(acres)	impacted		
		(I) or			(feet)		
		Perennial (P)					
New River Basin							
2	106+01-	UnT to	1:1	0.007	52.49	CNSW	UnT to 19-16
	106+04LT	Northeast					
		Creek (I)					
4A	107+70LT	UnT to	1:1	0.002	9.84	CNSW	UnT to 19-16
		Northeast					
		Creek (I)					
10	112+10 –	UnT to	2:1	0.032	314.96	CNSW	UnT to 19-16
	112+77	Northeast					
10A	112+08	Creek (P)			6.56	CNSW	UnT to 19-16
	LT						
New F	River Basin Imp	pacts		0.041	383.85		
			White Oa	k River Basi	in		
37	160+40 –	Starky's	2:1	0.022	134.51	С	20-10
	162+10RT	Creek (P)					
37A	161+38 LT				59.05	С	20-10
38	162+52 –	UnT to	(no	0.005	65.62	С	UnT to 20-10
	169+43 RT	Starky's	mitigation				
		Creek (I)	required)				
38A	163+77 –	UnT to	1:1	0	65.62	С	UnT to 20-10
	163+96 RT	Starky's					
		Creek (I)					
53	179+13 –	UnT to	1:1	0.002	65.62	С	UnT to 20-10
	179+30 LT	Starky's					
		Creek (I)					
54	181+51 –	Starky's	2:1	0	0	С	20-10
	182+79 CN	Creek (P)					
55	181+70	` '				С	20-10
	182+70 LT						•

Total Impacts		0.070	774.27			
White Oak River Basin Impacts		0.029	390.42			
	185+67 RT					
58	183+07 –				С	20-10
	185+05 CN					
57	183+00 –				С	20-10
	185+66 LT					
56	182+97 –				С	20-10

Corp Comment:

4. The permit application, page 10, provides a project description that states the proposed project includes two additional 12-foot lanes in each direction with a 46-foot grass median and "minimum" right of way of 200 feet. It appears from the permit drawings the ROW is 300 meters. Please confirm the ROW width proposed and confirm the associated wetland and stream impacts are correctly estimated based on this width.

DOT Response:

According to the NCDOT's Design Services Branch and the $\frac{1}{2}$ size plans submitted with the permit application, the ROW varies between 180 feet (55m) and 200 feet (60 m).

Corp Comment:

5. The wetland impacts due to drainage by the proposed lateral special ditches have been estimated using the Boussinesq Equation and DRAINMOD models but it is not clear if all the wetland impacts due to drainage are included in the total wetland impacts associated with this project. Table 3 of the permit application lists the linear footage of drainage impacts at four wetland sites, including Wetland Sites 6, 12, 13, and 39. The approximate acreages of these impacts, based on the Boussinesq Equation, are shown on the respective permit drawings at each site. Please revise Table 3 to show the amount wetland impacts, in acreage, at all the wetland sites were drainage impacts have been estimated, including those listed on Sheet 78 of the permit drawings but not listed in Table 3. In addition, please footnote the Table to indicate the method used at each site. Lastly, please provide this office a copy of the "Ditch Impact Study" report dated August 2003.

DOT Response:

The total project impacts (32.18) have been recalculated to account for drainage impacts of 0.87 acres at sites 6, 12, 13, 39. Table 3 has been revised to show the amount of wetland impacts in acres and is included below. Impacts calculated using Boussinesq 5% shown in Table 3 take into account excavation in wetlands already accounted for as impacts. With the exception of impacts calculated with Boussinesq 5%, impacts shown in Table 3 depict the maximum amount of acreage that would be drained due to ditches. Drained wetland impacts included in the permit application cover letter were inadvertently left off of the permit drawings summary sheet. Drainage impacts depicted on the permit drawings and summary sheet were derived using the Boussinesq Equation for 5% of the growing season. A copy of the Drainage report is attached to this letter.

Table 3 Revised – Special Ditch Impacts							
	5% of Gr	rowing Season	12.5% of Growing Season				
Site	Boussinesq	DRAINMOD Maximum	Boussinesq	DRAINMOD Maximum			
Number	Drainage Impact	Drainage Impact in	Drainage Impact	Drainage Impact in			
	in acres*	acres	in acres	acres			
6	0.60	1.24	1.49	4.68			
12	0.04	0.24	0.28	0.55			
13	0.22	1.01	1.49	2.20			
39	0.01	1.29	2.00	2.60			
TOTALS	0.87	3.79	5.26	10.03			

^{*}Calculations used as final impacts.

Corp Comment:

6. The permit drawings show excavation of an adjacent wetland at most of the stormwater outlets. Drainage impacts on wetlands at these sites should be addressed and included in the total wetland impacts unless it is found that these activities will not result in permanent wetland impacts. Rationale should be provided in those cases where excavation is found not to cause a permanent impact to the adjacent wetland.

DOT Response:

All areas of excavation in wetlands have been accounted for in the permit drawing impact summary table. This includes excavation in wetlands for proposed roadway cut ditches and required tail ditches at pipe outlets.

Corp Comment:

7. The proposed mechanized clearing limits shown on the permit drawings indicate an approximate mechanized clearing limit of 3 meters. Please confirm that this is consistent with the wetland, permit drawing sheet 78 of 81, dated 1/16/04. Please clarify the proposed mechanized clearing methods and limits and confirm the associated wetland impacts. Typically, the NCDOT projects are constructed with a 10-foot mechanized clearing limit. Please provide rationale for the proposed non-typical clearing limit.

DOT Response:

The permit drawings and determined impacts reflect Method III Clearing which requires 3m (10 ft) of mechanized clearing in wetlands for the majority of the project. In areas where additional easements for construction purposes (tail ditch improvements, phasing of box culverts, etc.) in wetlands are required, mechanized clearing impact widths/dimensions will exceed the standard 3m (10 ft) and have been included as impacts.

Corp Comment:

8. Wetland impacts associated with PSF's constructed in wetlands will result in permanent wetland impacts. Based on our review of the permit application, these impacts are not included in the total wetland impacts associated with this project. Please provide a summary of all the proposed PSF's that list each PSF by station number and the associated wetland and stream impact. Based on our experiences with the Smith Creek Parkway Project (U-92AB), PSF's may not be the best method to dissipate flows for this project and may pose major constructability

problems and recommend that NCDOT Division 3 be consulted regarding the constructability of PSF structures on this project.

DOT Response:

The NCDOT will remove all PSHs from wetlands and replace them with Rip Rap to prevent erosion. John Hennessy, DWQ, agreed to this decision in a conversation on March 31, 2004.

Corp Comment:

9. The permit application proposes to replace the existing bridge over Starkys Creek, Wetland Site 55 and 56, with a cored-slab bridge by using top down construction methods and remove the existing bridge by utilizing temporary work pads constructed in wetlands but within the footprint of the proposed permanent impacts. Based on the permit drawings 61-64 dated April 8, 2003, it is not clear if the permanent fill for the temporary work pads and access roads, including all the temporary pipes and box culverts, is needed for removal of the existing bridge. Although we fully support the proposal to use top down construction methods, we feel removal of the existing bridge can be accomplished without incurring permanent wetland impacts (and associated compensatory mitigation) associated with the work pads and access roads. Moreover, as stated on page 10 of the permit application, the Division of Coastal Management letter dated November 25, 1999 prohibits construction staging areas in wetlands as a condition of its consistency determination. Thus, we highly recommend that the proposed work pads and access roads be replaced with a work bridge that will only result in temporary wetland impacts. We also recommend that the NCDOT Division 3 be consulted on the proposed removal and replacement methods for this bridge. Lastly, it is not clear from the information provided how or where the existing US 17 traffic will be detoured during construction. The traffic detour plan should also be provided.

DOT Response:

According to Area Bridge Construction Engineer, Mike Robinson, the removal of the existing bridge's interior bents on this project cannot be performed utilizing top down construction. The physical size and weight of the existing interior bents requires that the bents be removed in pieces. In order to break the bents into pieces, shattering methods must be used. A project almost identical to this one was the widening of US-17 over Southwest Creek, south of Jacksonville. On that project, the bents were pulled over, broken into pieces, and removed from the site. Since the bents must be pulled over, a temporary bridge to provide access would not be appropriate since it would not be able to absorb the impact of the falling bent. Also, breaking into pieces would be better accomplished on two separate temporary rock work pads. The temporary rock work pads would only be required for removal of the existing interior bents. All other aspects of construction including removal of the existing superstructure and the construction of the new bridges can be accomplished utilizing top down construction. The temporary work pads will be constructed on top of fabric to facilitate removal. The duration of the temporary work pads would be short, as the removal of the interior bents would take no more than 2-3 weeks. If this method of construction is not allowed, the only other practical method of removal is to completely surround the interior bents with sheet piling, dewater the cofferdam, shatter or saw the bents into manageable pieces, and remove the resulting debris and sheeting.

This method would also be impractical for top down construction although it could be accomplished from a work bridge.

There will be no staging of equipment in wetlands, only access and temporary construction structures.

The traffic will be shifted using cross-overs inside the median. The impact of these cross-overs (Detours) have been shown on the plans since the early stages of the project design and can be seen on sheets 28 and 29 of roadway plans. The construction activity should not interfere with the traffic flow.

Corp Comment:

9-Continued

Please be advised that on February 6, 1990, the DA and the U.S. Environmental Protection Agency signed a memorandum of agreement (MOA) establishing procedures to determine the type and level of mitigation necessary to comply with the Clean Water Act Section 404(b)(1) Guidelines. This MOA provides for first, avoiding impacts to waters and wetlands through the selection of the least damaging, practicable alternative; second, taking appropriate and practicable steps to reduce impacts on waters and wetlands; and finally, compensating for any remaining unavoidable impacts to the maximum practicable extent. To enable us to process your application in full compliance with this MOA, we request that you provide the following additional information or clarifications:

a. The proposed project utilizes side slopes of 4:1 at each wetland site. Typically the NCDOT proposes 3:1 side slope or flatter side slopes at wetland sites to minimize the wetland impacts associated with a proposed project. Please provide the rationale for proposed fill slopes flatter than 3:1 along wetland sites.

DOT Response:

The project was designed with 4:1 side slopes to improve safety. Side slopes of 4:1 do not require a guardrail because they are considered recoverable for an errant motorist. However, side slopes of 3:1 are considered traversable, but not recoverable. These steeper slopes require either guardrail protection or an additional minimum ten-foot clear runout area beyond the clear zone. Due to the additional three feet of shoulder width required for guardrail installation and the low fill heights, any reduction in construction limits would be minimal.

Corp Comment:

b. The permit application cites a letter from the United States Fish and Wildlife Service (USFWS) dated November 16, 1999 that concurs with NCDOT's determination of "No Effect". The USFWS also states that this concurrence is contingent on any changes in the project plans. Please be advised that we have not received written confirmation from the USFWS that the NCDOT has satisfied the requirements of Section 7 of the Endangered Species Act (ESA). Please provide supporting documentation for all the ESA determinations that have not been coordinated with this office thus far, including all the ESA determinations since November 1999.

DOT Response:

There have been no major changes to the project plans since the NCDOT received concurrence from the USFWS on November 16,1999. However since the 1999 concurrence the bald eagle, West Indian Manatee and the golden sedge have been added to the list of federally protected species that occur in Onslow County. NCDOT biologists have determined that habitat for the bald eagle, West Indian Manatee, and the golden sedge is not present in the project area. Based on an April 7, 2004 phone conversation with Gary Jordan of the USFWS, this will have no effect on all of the federally protected species known to occur in Onslow County.

Corp Comment:

c. Based on the permit application, the cultural resource issues have not been fully resolved. Please be advised that have not received written confirmation from the NC SHPO that the NCDOT has satisfied the requirements of Section 106 of the HPA. Therefore, we recommend that the NCDOT contact the North Carolina State Historic Preservation Officer (SHPO) regarding the remaining requirements pursuant to Section 106 of the Historic Preservation Act (HPA). Please provide supporting documentation for Section 106 determinations regarding the Nelson Deppe House (including any SHPO comments on roadway design plans in the vicinity of the Nelson Deppe House) and the Hoffman Forest/Deppe Lookout Tower and Equipment Headquarters. Lastly, please provide a copy of the archeological survey study, referenced on page 9 of the permit application, that indicates that no archeological resources were found in the project area.

DOT Response:

The SHPO Concurrence Form for Assessments of Effects dated August 31, 1999 was included in Appendix A of the permit application. The form states that there is "No effect" on the Hoffman Forest/ Deppe Lookout Tower and there is "No Adverse Effect to the Nelson Deppe House". On April 5, 2004 representatives from the NCDOT meet with representatives of SHPO. The result of the meeting was the conclusion that the project is Not Likely to Adversely Effect the Nelson Deppe House.

The archeological report has been completed, and received final approval from SHPO on April 8, 2004. A copy of the final approval letter and the final archeological report is attached to this letter.

Corp Comment:

d. All invert elevations for pipes in wetlands should be shown on the permit drawings. In addition, the pipe dimensions and hydraulic flow directions should be clearly shown on the permit drawings to ensure that the width, slope, and vertical elevation of each pipe approximate the width, slope, and elevation of the existing stream that is being replaced, as much as practicable. Please provide this information, either with revised drawings or a tabular summary, for each stream that is being replaced with a pipe or culvert.

DOT Response:

Please refer to the ½ size plans included in the permit application. Inverts for all drainage structures and pipes are reflected in the drainage summary table in the ½ size plans and begin on

sheet 3-A. All open end cross pipes, box culverts, and bridges are reflected at their respective elevations on the profile sheets that begin on sheet 34 of the ½ size plans.

Corp Comment:

e. All proposed rip-rap in wetlands should be clearly labeled. The use of rip-rap at all wetland and stream sites should be minimized to reduce impacts to the existing wetlands and streams. Bioengineering techniques, to minimize wetland impacts, should be considered as a bank stabilization measure in lieu of rip-rap.

DOT Response:

All proposed riprap in wetlands on the permit plan views is labeled. Based on the conference call with USACE on 3/26/04, no further action required.

Corp Comment:

f. The permit drawings and construction plans could be further clarified by adding the associated construction design plan sheet number(s) to the title block of each permit drawing and/or add the permit drawing and wetland site number to the corresponding construction plan sheet. This is requested to assist our compliance inspections, NCDOT Division 3 personnel, and the NCDOT construction contractors during construction of this project.

DOT Response:

Station numbers are shown on permit drawings as well as on the half size plans. These numbers are used as a cross-reference between the two sets of drawings. Implementing the ½ size sheet # and permit sheet # reference would require wholesale protocol change within the Hydraulics, Roadway Design and Design Services Units.

Corp Comment:

g. The permit application indicates that stream forms and stream ratings have not been completed for this project. Please provide the completed USACE stream forms for each stream to this office. We recommend that DWQ be contacted regarding its requirements for stream information. Our forms are available from our website at www.saw.usace.armv.mil/WETLANDS/Permits.html.

DOT Response:

USACE Stream forms have been filled out for every jurisdictional stream that will be impacted by the proposed project and copies are included with this letter. The DWQ stream forms are used to determine if a stream is jurisdictional. Since stream jurisdictional status has been determined, no DWQ stream forms will be prepared.

Corp Comment:

h. The permit application, page 9, states that Essential Fish Habitat (EFH) impacts are not anticipated. Although we concur with this finding, we recommend that you reference the appropriate EFH guidance provided to the NCDOT by the NMFS and contact the National Marine Fisheries Service (NMFS), pursuant to its letter dated November 15, 2000, regarding its EFH requirements and that the NMFS confirm this finding.

DOT Response:

Through email communication on March 23, 2004, Fritz Rhode confirmed that the project would not impact any Essential Fish Habitat. According to Appendix 6 of the EFH guidance published February 1999, EFH in the South Atlantic is defined as estuarine or marine areas. No estuarine or marine areas are located in the project area. No water bodies in the project area are on the list water bodies that EFH species are found, published by the NMFS.

Corp Comment:

i. The permit application, page 10, states "there is no detailed flood insurance study involvement with any of the major stream crossings on this project" and that "compliance with FEMA will not be required". This appears to be inconsistent with the EA, page 34. Please clarify this statement.

DOT Response:

The widening of existing US 17 from two lanes to four lanes under R-2514A will impact three major stream crossings. The first major crossing at -L- Sta. 112+07 is a tributary to Northeast Creek, which is located upstream (outside the limits), of the FEMA Detailed Flood Insurance Study for Northeast Creek. The first crossing involves replacing a perched single barrel 6' x 4' box culvert with a single barrel 7' x 7' box culvert. Starky's Creek is crossed by the second and third major crossings at -L- Sta. 161+33.5 and -L- Sta. 182+87.4. At -L- Sta. 161+33.5, a double barrel 7' x 6' box culvert is proposed to replace the existing perched double 10' x 4' box culvert. At -L- Sta. 182+87.4, dual bridges with three spans of 46' for a total length of 138' are proposed to replace the existing 111' of bridge over Starky's Creek. Both of these crossings of Starky's Creek are designated as FEMA Flood Hazard Zone A. Zone A implies the approximate area of the 100 year flood, but no base (100 yr.) flood elevations and flood hazard factors have been determined. All three of the proposed replacement structures will provide equal or greater hydraulic conveyance than the respective existing structures, which will match or decrease ("no rise") the 100-year water surface elevations for each of these crossings. Therefore, since there is no FEMA Detailed Flood Insurance Study Involvement with any of the three major stream crossings, coordination with FEMA for compliance will not be required.

Corp Comment:

j. The permit application, page 10, makes reference to the consistency determination made by the North Carolina Division of Coastal Management (DCM) in its letter dated November 24, 1999. As you have stated, this consistency also stipulates conditions that must be met. It is not clear based on the permit application how these conditions have been met. Please provide this information for each DCM consistency condition.

DOT Response:

The conditions of the CAMA consistency are listed below and followed by NCDOT's compliance with the conditions.

• An acceptable mitigation plan to compensate for unavoidable wetland losses is developed. The NCDOT intends to use EEP to provide compensatory mitigation.

• If rare plant species will be negatively impacted by the proposed project, the NC Plant Conservation Program should be consulted in order to determine whether transplantation or other forms of mitigation would be desirable.

Karen Lynch, Biologist for the NCDOT, contacted the NC Plant Conservation on November 21, 2003 and March 15, 2004 to investigate whether transplantation of rare plant species would be required. To date the NCDOT has not received a response.

- A 401 Water Quality Certification is received from DWQ prior to the onset on construction.
 The NCDOT has applied for a 401 Water Quality Certification. Construction will not begin before the Water Quality Certification is received.
- Sedimentation and Erosion Control requirements and the Memorandum of Agreement between the NCDOT and the DLQ must be adhered to.

This is a standard commitment for all NCDOT projects.

- *Borrow and waste areas are not allowed in wetlands.*
 - This is a standard commitment for all NCDOT projects.
- Construction staging areas are situated in uplands specially, not in wetland areas.

This is a standard commitment for all NCDOT projects.

- Best management practices for the protection of surface waters will be strictly followed. This is a standard commitment for all NCDOT projects.
- All necessary DENR permits and/or approvals as indicated in the Intergovernmental Review dated October 25, 1999 are obtained and adhered to.

In a letter dated November 24, 1999, DCM determined that R-2514A is consistent with the North Carolina Coastal Management Program. The NCDOT submitted the Stormwater Permit Application to DENR on July 22, 2003. This application was included in the original application. The NCDOT has applied for a 401 Water Quality Certification. Construction will not begin before the Water Quality Certification has been received.

Corp Comment:

k. The permit application, page 12 addresses the indirect and cumulative effects of the proposed project. The report enclosed with the permit application entitled "Qualitative Indirect and Cumulative Effects Assessment" dated February 6, 2004 should be referenced in the application. It is also recommended that the summary of findings stated in the permit application, apparently based on this report, be clarified.

DOT Response:

A Qualitative Indirect and Cumulative Effects (ICE) Report was completed for the NCDOT in February 2004 and was included with the original application. A summary of the findings is included in the Executive Summary of the report.

Corp Comment:

l. The permit application and drawings show both Metric and English units but often only one unit is used. Please revise the permit application and drawings to show both English and Metric units. Please note that this office prefers English units.

DOT Response:

A summary sheet is included in the permit drawings that show English units. It is NCDOT's policy to use only English units in permit applications. Somehow an English summary sheet was inadvertently omitted from this application.

Corp Comment:

m. The permit application, page 13 lists the commitments of the FONSI but does not state how these commitments have been satisfied except for the Stormwater Management Plan dated September 2003. Please indicate how each FONSI commitment has been satisfied.

DOT Response:

The conditions of the FONSI are listed below and followed by NCDOT's compliance with the conditions.

• The North Carolina Plant Conservation Program will be given the opportunity to survey the right-of-way for any state listed (specifically Solidago verna, Xyris difformis var. floridanum, and Polygala hookeri) or other rare species.

Karen Lynch, Biologist for the NCDOT, contacted the NC Plant Conservation on November 21, 2003 and March 15, 2004 to investigate whether transplantation of rare plant species would be required. To date the NCDOT has not received a response.

• A Sediment and Erosion Control plan will be prepared for the project in accordance with the NCAC Title 15A, Chapter 4 and will follow erosion and sediment control measures set forth in the NCDOT Erosion and Sediment Control Guidelines for Contract Construction (January 1995) as applicable.

A copy of the sediment and erosion control plan has been prepared and is included with this letter.

• Borrow and waste areas for the project will not be allowed in wetlands without the appropriate permits.

This is a standard commitment for all NCDOT projects.

• Construction staging areas will not be allowed in wetlands.

This is a standard commitment for all NCDOT projects.

• <u>NCDOT Best Management Practices for Protection of Surface Waters</u> will be implemented as applicable.

This is a standard commitment for all NCDOT projects.

• Three major drainage structures are located within the project area. One bridge and two box culverts will be replaced in accordance with NCDOT Guidelines for Drainage Studies. The bridge over the lower reach of Starky's Creek at Site Nos. 54 through 58 (station 182+80) and will be replaced with dual structures approximately 135 feet long. An existing double RCBC which conveys the upper reach of Starky's Creek at Site Nos. 37 and 37A (station 161+00) will be replaced with a double RCBC approximately 131 feet long. Also an

existing RCBC which conveys an unnamed tributary to Northeast Creek at Site Nos. 10 and 10A (station 112+10) will be replaced with a RCBC approximately 136 feet long.

The bridge over Starkeys Creek will be replaced with dual structures that are 138-foot long bridge. The existing double RCBC at site 37 and 37A will be replaced with a double 7' by 6' RCBC, 138 ft long. The existing RCBC at site 10 and 10A will be replaced with a single 7' by 7' RCBC, 138 ft long.

• Stormwater drainage design will be addressed during the Design Phase and will be included as part of the construction plans and documents.

A copy of the Stormwater Management Plan (September 2003) was included in the original application.

• A Confederate soldier's gravesite is located in the southwest quadrant of the intersection of Deppe Loop Road and US 17. The proposed right-of-way at this intersection will be adjusted to avoid any impacts to the gravesite.

The gravesites located in the southeast quadrant of the intersection of Deppe Loop Road and US 17 have been moved.

Corp Comment:

n. The permit application, page 14 discusses the Interagency Permit Review meeting on April 24, 2003. Several discussion items during this meeting do not appear on this list that need to be satisfactorily addressed. Specifically, discussion on independent utility (question by NCDWQ), re-alignment of the project between stations 107+50 and 109+00 (suggested by the USACE), the need to excavate at Wetland Site 14 (concern by NCDWQ), and conservation measures that must be taken for the spring-flowering goldenrod (Solidago verna) to meet the DCM consistency requirements (comment by CAMA). One item that was not addressed but should have been is an off-deck drainage system for the Starkys Creek Bridge. Please coordinate with the DWQ Water Quality Section regarding this potential requirement.

DOT Response:

The permit application stated that R-2514A is in compliance with 23 CFR Part 771.111(f). The meeting minutes from the April 24, 2003 Interagency Permit Review meeting were reviewed and there is no record of discussion regarding independent utility. However, in section 2.4, page 6 of the EA covers independent utility. The EA reads that at an interagency meeting held January 21, 1999 to evaluate the status of TIP Project No. R-2514 and to request separating "A" section for independent study. All agencies in attendance concurred with NCDOT's proposal to process TIP Project No R-2514A as a Federal Environmental Assessment. The document also states that the project does not preclude the consideration of alternatives along the remainder of the TIP Project No R-2514 project corridor, especially the alternatives being considered in the Belgrade/ Maysville area.

The NCDOT looked at the request to realign the road between stations 107+50 and 109+00. We discovered that the realignment will affect almost 4000 feet (3/4 of a mile) of the proposed alignment of the project. This shift will affect the wetlands on the north side on the road. It will

also severely impact parcels that we were not impacting before. NCDOT would also have to relocate a large business near station 109+00.

In order to maintain existing drainage patterns and avoid hydraulic trespass, it was necessary to excavate a new roadway ditch down to the proposed 24 inch cross pipe at site 14. Without this proposed excavation the NCDOT would have been unable to achieve the hydraulic capacity of the proposed 15-inch outlet pipe and provide positive drainage for the proposed 2 GI in the median at –L- Sta. 123+40. In addition, without the proposed earth dam right of –L- Sta. 123+20, water from one drainage sub-basin would be have been diverted into an adjacent drainage basin that did not receive this water before.

As noted previously in this letter, Karen Lynch contacted "The North Carolina Plant Conservation Program" through email on November 21, 2003 and March 15, 2004 about conducting surveys for spring-flowering goldenrod and any other state listed species. To date the North Carolina Plant Conservation Program has not responded.

A note that describes the locations of the proposed bridge deck drains is in the upper left-hand corner of the permit plan view sheet 62 of 81. The deck drains will be placed in the first and last span of the proposed three span dual bridges, which are not over open water. The deck drains will not be placed in the center span over the surface waters of Starky's Creek.

Corp Comment:

o. The proposed project constitutes Segment A of TIP Project No. R-2514. Based on correspondence in the EA and on discussions at the interagency meeting held on April 24, 2003, agency concurrence was provided on avoidance and minimization during several meetings held on both R-2514A and R-2514B. Please provide documentation (i.e. meeting minutes or concurrence forms) that supports the agency concurrence on avoidance and minimization that pertain to R-2514A and the wetland and stream impacts associated with each alternative considered.

DOT Response:

A copy of Concurrence Point 2 meeting minutes, held on December 8, 1999, are included with this letter. The purpose of this meeting was to discuss alternatives that would avoid and minimize impacts. The avoidance measures that were agreed upon included widening to the east using the previously disturbed railroad right-of-way. By widening to the east, impacts to the historic Hoffman Forest Headquarters were avoided, and longitudinal encroachments to Starky's Creek and other high quality wetlands were avoided. Minimization measures included the use of the previously developed right-of-way and bridging of the lower limits of Starky's Creek.

Corp Comment:

p. The permit application, page 15 states compensatory mitigation will be provided by the EEP. We concur with this proposal pending a final determination regarding the availability of on-site compensatory mitigation. The permit application references the study report "On-Site Mitigation Feasibility Analysis (June 2003) that indicates that onsite mitigation is not preferable to the NCDOT. Please submit a copy of this report for our review to this office. Should we

concur with your on-site mitigation determination offsite mitigation to compensate for the unavoidable impacts associated with this project may be appropriate and should be provided by the EEP in accordance with the EEP Memorandum of Agreement (MOA) between the State of North Carolina and the US Army Corps of Engineers signed on July 22, 2003.

DOT Response:

A copy of the On-Site Mitigation Feasibility Analysis is attached to this letter. It should be noted that onsite mitigation was determined to not be feasible because of the extensive drainage system of the Hofmann Forest and the somewhat poorly drained classification of Rains soil.

If you have any questions or need additional information please call Mr. Brett Feulner at (919) 715-1488.

Sincerely,

Gregory J. Thorpe, Ph.D., Environmental Management Director,
Project Development and Environmental Analysis Branch

cc: Mr. David Franklin, Corps of Engineers, Wilmington Field Office

Mr. Bill Arrington, DCM (Morehead City)

Ms. Cathy Brittingham, DCM (Raleigh)

Mr. Garland Pardue, Ph.D., USFWS (Raleigh)

Mr. John F. Sullivan III, P.E., FHWA

Mr. John Hennessy, NCDENR, Division of Water Quality

Mr. Calvin Leggett, P.E. Program Development Branch

Mr. Art McMillian, P.E., Highway Design Branch

Mr. David Chang, P.E., Hydraulics Unit

Mr. Greg Perfetti, P.E., Structure Design Unit

Mr. Jay Bennett, P.E., Roadway Design Unit

Mr. Mason Herndon, Division 3 Environmental Officer

Mr. H. Allen Pope, P.E., Division 3 Engineer

North Carolina Department of Cultural Resources State Historic Preservation Office

Michael F. Easley, Governor Lisbeth C. Evans, Secretary Jeffrey J. Crow, Deputy Secretary Office of Archives and History Division of Historical Resources David L. S. Brook, Director

April 8, 2004

MEMORANDUM

TO:

Gregory J. Thorpe, Ph.D., Director

Project Development and Environmental Analysis Branch

NCDOT Division of Highways

FROM:

David Brook Rector David Polosk

Deputy State Historic Preservation Officer

SUBJECT:

Archaeological Survey, Widening of US 17, Segment 1, Between Jacksonville

and New Bern, NCDOT Division 3, R-2514A, Onslow County, GS 94-0013

Thank you for your letter of April 2, 2004, transmitting the archaeological survey report by Erica Sanborn and Lawrence Abbott of New South Associates, Inc. for the above project.

During the course of the survey, no prehistoric or historic archaeological sites were located within the project area. Due to the disturbed and wet nature of the project area and the absence of cultural material, the authors have recommended that no further archaeological investigation be conducted in connection with this segment of the project. We concur with this recommendation since the project will not involve significant archaeological resources.

When the preferred alternative has been selected for the remaining segment of this project (R-2514B), we recommend that consultation take place regarding appropriate archaeological investigations.

The above comments are made pursuant to Section 106 of the National Historic Preservation Act and the Advisory Council on Historic Preservation's Regulations for Compliance with Section 106 codified at 36 CFR Part 800.

Thank you for your cooperation and consideration. If you have questions concerning the above comment, please contact Renee Gledhill-Earley, environmental review coordinator, at 919/733-4763. In all future communication concerning this project, please cite the above-referenced tracking number.

cc: V Matt Wilkerson, NCDOT

Lawrence Abbott, New South Associates, Inc.

www.hpo.dcr.state.nc.us

4617 Mail Service Center, Raleigh, NC 27699-4617 (919) 733-4763 •715-4801

Telephone/Fax

Subject: Meeting I

Meeting Minutes from the Interagency Permit Review Meeting

on April 24, 2003 for R-2514A in Onslow County

Team Members:

Dave Timpy-USACE	(present)
John Hennessy-NCDWQ	(present)
Travis Wilson-NCWRC	(present)
Gary Jordan-USFWS	(absent)
Chris Militscher-EPA	(present)
Rachelle Beauregard-PD&EA	(present)
Ron Sechler-NMF	(absent)
Cathy Brittingham-CAMA	(present)
Bill Arrington-CAMA	(absent)
Jay Twisdale-NCDOT Hydraulics	(present)

Participants:

Ray Lovinggood, Transystems, Hydraulics Zak Hamidi, NCDOT, Design Services Bart Duke, NCDOT, Structure Design Steve Champion, NCDOT, Structure Design Elizabeth Lusk, NCDOT, PD&EA Brett Feulner, NCDOT, PD&EA Kim Leight, RK&K

Dave suggested that the adjacent property owners reflected on the Roadway Plans and the Permit Drawings should be checked to ensure that they are correct and agree.

Dave noted that most of the proposed pipes appeared to be the same size as the existing pipes. Jay responded by explaining that the current character (land use) of the adjacent tracts is not anticipated to change since the majority of the adjoining tracts is owned by Hoffman Forest (Historic Property owned by NCSU), Weyerhaeuser Timberlands, and Great Eastern Timber Company (Tree Farms). Therefore, pipe sizes primarily remained the same or very close to the same. No further action was determined to be necessary.

Dave noted that he was pleased that all jurisdictional streams were labeled.

Dave offered that all proposed work should be contained in PDE or ROW. Jay responded to a specific area (Site 3, Permit Plan View Sheet 7 of 79) in question and explained that this area is reflected as drained wetlands since it will be a small remnant after construction of the road. Jay also confirmed that all proposed work is enclosed in either PDE or ROW. It was agreed that no further action will be required.

Dave also noted and Rachelle confirmed that ESI is currently updating the wetland delineation.

Dave suggested that on site mitigation should be pursued first possibly on the West Side of existing US 17. Dave as well as John also agreed that on site mitigation should be pursued first and the area between the proposed roadway footprint and the old rail road bed as well as the old rail road bed itself (East side of roadway), should also be investigated. Kim stated that the Board of Trustees for Hoffman Forest (Historic Property) seemed reluctant when approached about the potential loss of additional property for use of the old railroad bed area as mitigation. Kim also mentioned that the Trustees suggested that a wetland mitigation bank in Hoffman might be an option.

John requested that all pipes/box culverts should be buried appropriately. Jay responded by stating that four of the jurisdictional crossings where pipes or box culverts are proposed, as replacement structures will be buried appropriately. Two of the remaining 600mm pipes will not be buried since jurisdictional status begins at the existing pipe outlets. The remaining crossing is a bridge. No further action was deemed necessary.

John requested that all special ditches that run through or that are adjacent to wetlands will need to be assessed for limit of impact due to drainage impacts. Additional discussion to occur between John and Elizabeth concerning ditches that are adjacent to wetlands.

Chris asked about the significance of the water courses right of –L- Sta. 107+10 +/- in front of an existing mobile home (Parcel 22, Permit Plan View Sheet 7 of 79). Jay responded by stating that the watercourses immediately in front of the mobile home are small swales to drain the yard and the larger drainage ditch that they tie into is ephemeral. No further action necessary.

Dave offered that in a conversation with Ron Elmore several years ago, Ron mentioned that approximately 28 acres of the existing railroad bed could possibly be used as on site mitigation.

Travis stated that there should be no adjustment of stream widths and that no rip rap should be placed in the bed of jurisdictional streams. He also mentioned that all jurisdictional stream culvert inverts should be buried a minimum of 20% of culvert diameter or 1' for aquatic passage.

Dave stated that DOT needs to demonstrate that Avoidance and Minimization has been addressed. Cathy provided a copy of a memorandum dated December 9, 1999 that confirmed that A&M had been addressed for this section of R-2514.

John asked about velocities entering wetlands from storm drainage pipe outlets. Jay responded that preformed scour holes have been placed at all pipe outlets that empty into wetlands. David Chang asked if we could provide a general statement in the Storm Management Plan that addresses anticipated outlet velocities based on the use of preformed scour holes instead of adding velocities at each occurrence. Considering the flat slopes of proposed pipes due to the flat topography in this part of the state, velocities will generally be low. John agreed that this would be sufficient. A note will be added to the Stormwater Management Plan.

Cathy Brittingham reminded NCDOT that in a letter dated 11/24/99, DCM determined that TIP No. R-2514A: "...is consistent with the North Carolina Coastal Management Program (NCCMP) provided all state and local authorizations are obtained and the conditions therein are met, and provided that the following conditions are met....." NCDOT staff made additional copies of the 11/24/99 DCM letter at the meeting. Especially notable conditions within the 11/24/99 DCM

letter include Condition 1 regarding mitigation and Condition 2 regarding conservation measures for the spring-flowering goldenrod. Cathy urged NCDOT to submit a proposed mitigation plan for approval by the resource agencies as soon as possible to prevent delays of the construction letting date (February 2004). Cathy also encouraged NCDOT to implement the requested conservation measures for spring-flowering goldenrod.

Review of Half-Size Plan Sheets

Plan Sheet 4: No Comments

Plan Sheet 5: No Comments

<u>Plan Sheets 6 and 7:</u> John asked that widening to the West be investigated from approximately –L- Sta. 107+50 lt. to 109+00 lt. PD&EA (Ron Elmore) and Design Services (Zak Hamidi) will address this issue.

<u>Plan Sheet 8:</u> John, Travis, Dave and others reviewed the proposed single barrel replacement box culvert. Dave asked if the proposed box could be skewed to avoid the proposed channel change at the entrance. Jay responded that two separate tributaries converge at the entrance of the existing box culvert and that the box has been placed to accommodate both of these existing tributaries and emulate existing conditions. Dave acknowledged that he had not noticed the other smaller tributary and agreed with the design. Jay explained that this proposed box culvert will be buried one foot and will be much better than the existing perched box culvert. No other comments were made. No additional action required.

Plan Sheet 9: No comments

Plan Sheet 10 (Permit Plan View Site 13A, Sheet 16 of 79): John asked about the proposed excavation in wetlands reflected within the limits of the improvements to the existing tail ditch left of 119+57 –L- +/-. Jay responded that the excavation is a result of improving the slopes of the existing tail ditch.

Plan Sheet 11 through 21: No comments.

<u>Plan Sheet 22:</u> John asked if the proposed double barrel box culvert will have a proposed sill in one of the barrels. Jay responded that due the proposed box culvert width being very close to the existing channel width that a sill was not required. John agreed and added that he thought that considering the low velocities that the channel will more than likely adjust back to existing conditions without a sill. No further action required.

Plan Sheet 23 through 26: No comments

Plan Sheet 27: Dave noted that the wetland boundaries on this plan sheet left of Station 177+00 +/- do not agree with the limits reflected on the Permit Plan View for this area. Jay responded that the boundaries reflected on the Permit Plan View are correct and the plans will be revised to agree.

Plan Sheet 28: No Comments

<u>Plan Sheet 29:</u> John noted that the proposed bridges were slightly longer than the existing bridge. No further discussion or action was determined to be necessary.

Plan Sheet 30 through 33: No Comments

Post Meeting Activities

8/28/03 Additional impacts to four areas (Sites 6, 12, 13, and 39) where wetlands

will remain immediately beyond the proposed back slope of proposed roadway cut ditches have been determined using Boussinesq's equation

and have been reflected on the impact summary sheets.

9/10/03 Received updated wetland delineations and stream classification calls,

which have been incorporated and reflected accordingly on the permit

drawings and impact summary sheets

North Carolina Department of Cultural Resources State Historic Preservation Office

Michael F. Easley, Governor Lisbeth C. Evans, Secretary Jeffrey J. Crow, Deputy Secretary Office of Archives and History Division of Historical Resources David L. S. Brook, Director

April 8, 2004

MEMORANDUM

TO:

Gregory J. Thorpe, Ph.D., Director

Project Development and Environmental Analysis Branch

NCDOT Division of Highways

FROM:

David Brook Rector David Rook

Deputy State Historic Preservation Officer

SUBJECT:

Archaeological Survey, Widening of US 17, Segment 1, Between Jacksonville

and New Bern, NCDOT Division 3, R-2514A, Onslow County, GS 94-0013

Thank you for your letter of April 2, 2004, transmitting the archaeological survey report by Erica Sanborn and Lawrence Abbott of New South Associates, Inc. for the above project.

During the course of the survey, no prehistoric or historic archaeological sites were located within the project area. Due to the disturbed and wet nature of the project area and the absence of cultural material, the authors have recommended that no further archaeological investigation be conducted in connection with this segment of the project. We concur with this recommendation since the project will not involve significant archaeological resources.

When the preferred alternative has been selected for the remaining segment of this project (R-2514B), we recommend that consultation take place regarding appropriate archaeological investigations.

The above comments are made pursuant to Section 106 of the National Historic Preservation Act and the Advisory Council on Historic Preservation's Regulations for Compliance with Section 106 codified at 36 CFR Part 800.

Thank you for your cooperation and consideration. If you have questions concerning the above comment, please contact Renee Gledhill-Earley, environmental review coordinator, at 919/733-4763. In all future communication concerning this project, please cite the above-referenced tracking number.

cc: V Matt Wilkerson, NCDOT

Lawrence Abbott, New South Associates, Inc.

www.hpo.dcr.state.nc.us

STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATION

MICHAEL F. EASLEY
GOVERNOR

LYNDO TIPPETT SECRETARY

April 2, 2004

Mr. David Brook, Administrator State Historic Preservation Office 4617 Mail Service Center Raleigh, North Carolina 27699-4617

Dear Mr. Brook,

Re:

An Archaeological Survey for the Widening of US 17, Segment 1, Between Jacksonville and New Bern, Onslow County, North Carolina, NCDOT TIP R-2514A, Division 3, State Project No. 8.T190301, Federal Aid Project No. NHF-17(7), ER 96-8827.

Enclosed please find two copies of the manuscript prepared by our archaeology consultants reporting the results of our investigation in regards to the above-referenced project. Site identification and evaluation were done in compliance with Sections 106 and 110 of the National Historic Preservation Act (1966, as amended), the National Forest Management Act (1976, as amended), the Archaeological Resources Protection Act (1979, as amended), and the guidelines issued by the Advisory Council on Historic Preservation.

No significant cultural resources were located nor were any archaeological sites recorded or revisited that meet the criteria for the National Register of Historic Places (NRHP) as listed at 36CFR60.4. The report concludes that the proposed project will not impact any archaeological sites that are on or are eligible for inclusion on the NRHP. Therefore, a finding of no effect is appropriate as far as archaeological resources are concerned.

In reference to your memo of May 15, 1996, once the preferred alternative has been chosen for the remainder of this project (i.e. R-2514B), further consultation shall take place on the extent and type of survey appropriate to the project areas. Thank you for your assistance in this matter. Should you have any questions concerning this project, please contact either myself at (919) 715-1561 or Mr. Paul J. Mohler, NCDOT Archaeologist, at (919) 715-1555.

Regards,

Matt Wilkerson

Archaeology Supervisor

Office of Human Environment

MTW/pjm

Enclosures (2 copies of report)

cc:

Ron Lucas, FHwA (one copy of report); Kenneth L. Rago, USFS (three copies of report) Paul J. Mohler, OHE (two copies of report); Brett Feulner, ONE (one copy of report) Stacy Baldwin, PDEA; John Conforti, PDEA

MAILING ADDRESS: NC DEPARTMENT OF TRANSPORTATION OFFICE OF HUMAN ENVIRONMENT 1583 Mail Service Center RALEIGH NC 27699-1583 TELEPHONE: 919-715-1500 FAX: 919-715-1522

WEBSITE: WWW.NCDOT.ORG

LOCATION:
PARKER LINCOLN BUILDING
2728 CAPITAL BOULEVARD, SUITE 168
RALEIGH, NC 27604

An Archaeological Survey for the Widening of US 17, Segment 1, Between Jacksonville and New Bern, Onslow County, North Carolina

NCDOT TIP R-2514A

New South Associates 6150 East Ponce de Leon Avenue Stone Mountain, Georgia 30083

An Archaeological Survey for the Widening of US 17, Segment 1, Between Jacksonville and New Bern, Onslow County, North Carolina

NCDOT TIP R-2514A

FEDERAL AID PROJECT NUMBER NHF-17(7)

Report submitted to:
Wilbur Smith Associates
333 Fayetteville Street Mall
Suite 1450
Raleigh, NC 27602-2478

Submitted by: New South Associates 6150 Ponce de Leon Avenue Stone Mountain, GA 30083

-and-

P.O. Box 481 Mebane, NC 27302

Lawrence E. Abbott, Jr., Principal Investigator

Erica E. Sanborn, Author

New South Associates Technical Report Number 694

January 5, 2000

Management Summary

New South Associates conducted an archaeological survey of Segment 1 of the proposed widening of US 17 in Onslow County, North Carolina. This project was partially funded by the North Carolina Department of Transportation (TIP # R-2514A), with remaining funding by the Federal Highway Administration. This highway improvement is a federal aid project (#NHF-17(7)) and is subject to compliance with the National Historic Preservation Act. This report was prepared to fulfill the Federal Highway Administration's procedures for compliance with Section 106 of that act. The area in which the widening is proposed extends from north of Jacksonville to south of Belgrade/Mayesville along US 17 southeast to the abandoned Seaboard railroad bed. Most of this area had been disturbed by borrowing of soil in order to raise the grade of both the old railroad grade and US 17 as it presently exists. Areas not effected by this disturbance were wet. No archaeological sites were noted within the area proposed for widening. No additional archaeological work is recommended for the survey area. In addition, the abandoned railroad grade can provide little additional information concerning late nineteenth-early twentieth century railroad construction and does not meet any of the criteria for listing on the National Register of Historic Places. As a result, no additional documentation of the railroad grade is recommended.

INTRODUCTION

New South Associates conducted an archaeological survey of Segment 1 of the US 17 widening between Jacksonville and New Bern, in Onslow County, North Carolina on November 4 and 5, 1999 for Wilbur Smith Associates (Figure 1). Ms. Erica E. Sanborn performed the field work on these days. The project area covers the area southeast of US 17 to the abandoned Seaboard railroad bed from the end of the four-lane portion of US 17, northeast of Kellum, to 200 feet northeast of Spring Hill Road (SR 1439), northeast of Deppe. The length of Segment 1 is approximately 5.9 miles, its width ranges from 50 to 100 feet, and covers approximately 36.5 acres.

This survey was undertaken to identify and assess any archaeological resources effected by widening US 17 southeast to the abandoned Seaboard railroad bed. Most of the area was either wet, or disturbed as a result of borrowing in order to raise the grade of the presently existing US 17 and the railroad bed. No archaeological resources were located by the survey. The railroad track was dismantled when it was abandoned. As a result, the abandoned railroad grade can provide little additional information concerning late nineteenth-early twentieth century railroad construction.

ENVIRONMENTAL SETTING

US 17 is located within the Lower Coastal Plain of the North Carolina Piedmont within the Riverbend Formation (Barnhill 1992, Brown 1985). Limestone and marl comprise the underlying rock of the Riverbend Formation. The Wicomico Surface covers Segment 1 of the US 17 widening project and is Pleistocene in age. Poorly drained soils (Muckalee loam, Rains fine sandy loam, and Pantego mucky loam) associated with White Oak Pocosin comprise most of the project area. Better drained Lynchburg fine sandy loam, Goldsboro fine sandy loam, and Craven fine sandy loam are found in the vicinity of creeks located at the northeast and southwest ends of Segment 1. The severely disturbed Goldsboro-Urban land complex is found in the vicinity of the gravel mining operation located southwest of Starkey's Creek.

White Oak Pocosin dominates the project area (Figures 2 and 3). It is predominantly a pine plantation. Natural pocosins are dominated by dense stands of pine and broadleaf, small trees or shrub which limit the availability of sunlight to plant species near the ground (Sharitz and Gibbons 1982). Atlantic white cedar, cypress, and black gum were dominant species during initial European settlement of the Coastal Plain. Presently, pond pine dominates in natural pocosins, with red and sweet bay, swamp ironwood, sweet gallberry, dahoon holly, pepperbush, fetterbush, and zenobia

Figure 1 Project Vicinity

Figure 2 Project Area and Survey Coverage, 1 of 2

represented in the understory. Only one named creek, Starky's Creek, is found within the northeast portion of the project area. Creeks and rivers in the northeast end of the project area drain into the White Oak River, while those in the southwest portion drain into the New River. The elevation of the project area ranges from 30 to 45 feet amsl.

CULTURAL BACKGROUND

Phelps (1983) and Reid et al. (1995) have summarized the prehistory of eastern North Carolina. The following discussion draws heavily from their work. Work at Cactus Hill, a Coastal Plain site in the southern Virginia Coastal Plain suggests that human habitation of the Atlantic Coastal Plain may date to 15,000 B.C. (McAvoy and McAvoy 1997). The earliest uncontested occupation of this part of North Carolina is called the PaleoIndian Stage, and dates to 12,000 to 8,000 B.C. This stage is usually identified by the presence of fluted projectile points, and includes other formal tools knapped on one or both faces. Sites dating to this period typically consist of isolated fluted projectile points. The environment was much cooler than it is presently. The groups from this period practiced hunting and gathering. Hunting probably focused on now-extinct megafauna (mammoth, mastodon, and ground sloth) supplemented by elk, moose and deer. Residences were likely temporary and focused on gathering specific resources.

The Archaic Stage dates to B.C. 8,000-1,000. During the Archaic, the environment became warmer. Modern fauna replaced megafauna in the diet of Archaic groups. The Archaic is separated into Early (B.C. 8,000-6,000), Middle (B.C. 6,000-3,000) and Late (B.C. 3,000-1,000) periods. These distinctions are based on changes in projectile point form through time (Coe 1964). Population density is thought to have increased over time. As a result, territories became constricted. This is thought to have resulted in more intensive use of local resources, ultimately resulting in the use of horticulture during the Late Archaic.

The beginning of the production of ceramics dates to the Late Archaic. Production of ceramic vessels may be related to territory constriction limiting access to soapstone for vessel production (Sassaman 1993, 1996). Radiocarbon dates as early as B.C. 2905-2875 (Abbott et al. 1999) indicate that ceramics may have been produced for much, if not all, of the Late Archaic in the southern Coastal Plain of North Carolina. The earliest group of radiocarbon dates is associated with marl/limestone tempered net-impressed, simple-stamped, and cord-marked pottery (Hamp's Landing Series) and range from B.C. 2125 to 1870 (Hargrove 1993, Jones et al. 1997; Abbott et al. 1999). Of this cluster of dates, one ranging from B.C. 2035-1870 was recovered from 31On190, on

Topsail Island (Jones et al. 1997). In addition, one date associated with a Thom's Creek vessel in Columbus County ranges from 2025-1880 B.C. (Abbott et al. 1999).

The Woodland Stage spans from B.C. 1,000 to 1,500 A.D. Like the Archaic Stage, the Woodland is divided into Early (B.C. 1,000-500), Middle (B.C. 500-500 A.D.) and Late (500-1,500 A.D.) Periods. Grog tempered Hanover ceramics associated with the Early Woodland period in the central North Carolina Coastal Plain are represented by one radiocarbon date of B.C. 760-415 in Columbus County (Abbott et al. 1999). In addition, a thermoluminescence (TL) date of B.C. 684-184 for a sand tempered Cape Fear sherd (Herbert 1997) indicates that it was produced during the Early/Middle Woodland interface. A number of Middle Woodland radiocarbon dates are associated with grog or clay tempered sherds. These range from B.C. 415-A.D. 825. A recent Late Woodland TL date for a sand tempered sherd (Herbert 1997) suggests that these ceramics were produced during the Late Woodland period. In addition, shell-tempered White Oak ceramics are associated with estuarine Late Woodland sites in the central North Carolina Coastal Plain.

Horticulture developed into agriculture during the Woodland Stage. However, in the central North Carolina Coastal Plain, there is little evidence for agriculture. Two Late Woodland house patterns were excavated at the Uniflite Site (31On^V33), in Onslow County (Loftfield 1979). The dietary remains were almost exclusively fish and shellfish, indicating that estuarine resources were the primary source of food at this site. In addition, the appearance of large shell middens at Middle and Late Woodland sites indicates an increased use of shell fish in the prehistoric diet at this time (Loftfield 1981). Residences were probably seasonal, and were established along the sounds and in the estuaries. Hunting and gathering remained the important subsistence activity in the region throughout the Woodland Stage.

By A.D. 1,500 historic Native American groups were probably established within the project area. Shell-tempered Oak Island ceramics are thought to be associated with the influx of Algonkian/Iroquoian groups found further north (Mathis 1999). These sites also produce large quantities of shell fish remains. The Tuscarora were an important historic Amerindian group who settled in the New Bern area. Hostilities between European settlers and the Tuscarora resulted in the Tuscarora War (1711-1714). With the end of the Tuscarora War, most of the Tuscarora moved to Virginia and then New York, though those that remained neutral during the war remained in North Carolina until 1802 (Swanton 1987 [1946]:199).

The first European colonists in Onslow County settled Town Point at present-day Camp Lejeune. Onslow Precinct was established from New Hanover Precinct in 1731, just after North Carolina was purchased by the English Crown from the Lord Proprietors (Powell 1989:85). Johnston was the first county seat, and was platted in 1742 (Sharpe 1966). It was located along the New River. A hurricane in 1752 destroyed the town. As a result, a new county seat was established upstream of Johnston, and was called "Wantlands". The first courthouse was built in 1756 at Wantlands. "Wantlands" became Jacksonville in 1842, in order to honor Andrew Jackson.

The primary cash "crop" in Onslow County was pine (Littleton 1981). Sap and resin harvested from these trees were converted into turpentine, tar and pitch and exported to England for use in their naval fleet. In addition, cedars and live oaks were harvested for their lumber (Harmon and Snedeker 1989). Corn was the primary agricultural product, with wheat, rice, flax, indigo, and hemp represented. However, much of the area of Onslow County was wet and swampy. As a result, relatively little of the acreage in the county has ever been placed in cultivation. The extent of these wet areas is reflected in the placement of the early road system, which followed the higher, better drained ground. Not until the advent of the Atlantic railroad in the late nineteenth century were the pocosins directly traversed.

The Coast was the focus of North Carolina's direct involvement during the early portion of the Civil War. Salt works were established along Onslow County's coast, and the numerous inlets provided refuge for blockade runners. After the Civil War, plantations were replaced by sharecropping and tenancy in the agricultural areas of Onslow County. During the postbellum period, the production of tar and pitch, and cotton provided cash for the area. However, naval stores remained the economic mainstay of the region, well into the twentieth century. This emphasis is reflected in the rail system that was established in the late nineteenth-early twentieth centuries. The rail system found northeast of Kellum was established between 1892 and 1895 by the New Bern & Norfolk Rail Road Company (Brown 1960). The rail line cut across White Oak pocosin (Jurney et al. 1923, U.S. Post Office Department 1923). Numerous lumber rail lines terminated at the Atlantic Coast Rail Road, providing an efficient means to transport lumber and naval stores out of White Oak pocosin. Present-day US 17 was built paralleling the Atlantic Coast Rail Road by 1938 (North Carolina State Highway and Public Works Commission 1938) as part of an extensive road building effort funded in the late 1920's with state bonds (Powell 1989:476).

By 1934, Dr. J. V. Hofmann, in conjunction with the North Carolina Forestry Foundation, Inc., purchased White Oak pocosin, establishing Hofmann State Forest (Mr.

Harold C. Blanchard, November 12, 1999, personal communication). The purpose of this forest was to provide a teaching laboratory for students at North Carolina State University. A CCC camp was established in 1936-1937 at the location of the present-day Hofmann State Forest headquarters along US 17. A 12 week summer camp for the students and forestry research has been conducted at the site as part of its primary mission. In 1945 buildings were relocated from Camp Butner to Hofmann Forest. The forest used the proceeds from timber sales to pay its mortgage. Since paying its mortgage in 1989, timber sales provide supplemental income for scholarships.

Small family-based timber operations have been replaced by large, multiregional timber and paper corporations. At the same time, the establishment of Camp Lejeune along the New River has resulted in an increase in the number of service industry jobs available in the area. As a result, individual participation in service industries associated with Jacksonville and Camp Lejeune during the middle and late twentieth century has become more important to the economy of the area as the forestry industry has consolidated. However, forestry products remain an important part of the economic life of Onslow County to the present.

METHODS

Background research was conducted at the Office of State Archaeology, the Survey and Planning Branch, the North Carolina State Library, and the North Carolina State Archives, Division of Archives and History, as well as the Wilson Library at the University of North Carolina in Chapel Hill. A pedestrian survey of the entire project area was undertaken. Because most of the project area (87.4%) was within the White Oak Pocosin, most of the area was wet (30.3 acres, or 83.0% of Segment 1). Disturbed areas (5.4 acres, or 14.8% of the project area) showed gullying and rilling. This is a result of borrowing activities associated with raising the grade of the Seaboard railroad bed and US 17. Areas with 60% visibility or better comprised one tenth of an acre (less than 0.1% of the project area). Six shovel tests were excavated in areas that were not wet, were relatively undisturbed, or lacked surface visibility (0.7 acres, or 1.9% of Segment 1). Shovel tests were placed at 30 m intervals in cases where there was more than 45 meters of contiguous area to be shovel tested. The shovel tests were 30 cm across and excavated according to their natural soil stratigraphy to the subsoil. Subsoil within the project area was a grey or brownish yellow silty clay that ranged from 19 to 40 cm below surface. Soil within the shovel tests was screened through 1/4 inch hardware cloth, and a record of the stratigraphy was made. Representative areas along Segment 1 were photographed in order to show the extent of disturbance in the project area and document the abandoned railroad bed.

PREVIOUS RESEARCH

Background research at the Office of State Archaeology, North Carolina Division of Archives and History indicates that no archaeological sites had been recorded between US 17 and the abandoned Seaboard railroad bed within the Kellum Quadrangle. No formal archaeological surveys have been made of the area within the Kellum Quadrangle. However, eleven prehistoric sites (31On111, 31On114-31On116, 31On122, 31On131, 31On180-182, 31On206, and 31On279) have been reported within this area. One of these sites (31On279) is listed as a Archaic temporary camp, two (31On114 and 31On115) contain pottery, and one (31On131) contains lithics. Artifacts are not described for the remaining sites.

Three of the sites (31On114-116) are located at the confluence of Little Northeast Creek and a rank three unnamed drainage. The remaining eight sites are located at the edge of the upland flats overlooking rank two or larger creeks. The location of sites along the larger creeks may be related to the relatively dramatic change (between 5 and 25 feet) in elevation at the juncture of the upland flats and larger creeks. The smaller, unnamed drainages are generally associated with elevation changes of less than five feet, resulting in poorly drained, wet areas. The areas at the large elevational changes tend to be well-drained, and are better suited to habitation sites than those along the rank one streams. One of the sites (31On131) is located within the White Oak River drainage. The other ten sites are located in the New River basin.

Reid et al. (1995) conducted an archaeological survey of the Greater Sandy Run Acquisition Area at Camp Lejeune. Their background research showed that sites were found more often on well-drained soils consisting of fine sand and sandy loams found around the pocosins and drainages. They modeled low, medium, and high probability areas for archaeological sites based on soil types. Hydric (wet) soils were considered to be low probability areas. Baymeade, Marvyn, Norfolk, Onslow, and Wando soil types were considered to be high probability areas. The remaining soil types which were not hydric were considered to be medium probability areas. A total of 9,312 acres encompassed medium and high probability areas. Twenty-two archaeological sites were found by the survey. Three of these sites were cemeteries, three historic, three both historic and prehistoric, and 13 prehistoric. All but one of these sites (95.5%) were located on moderate probability soils. The remaining site (4.5% of the total sites found) was located on a high probability soil. However, 92 percent of the total acreage surveyed was located on moderate probability soils, while eight percent were high probability soils. The similarity of the relative composition of soil types and archaeological sites may indicate that all anhydric (well-drained) soil types are, in essence, high probability areas in the central Coastal Plain.

SURVEY RESULTS

No archaeological resources were found within the project area. Occasional railroad ties were noted in the area between US 17 and the abandoned Seaboard railroad bed. These ties were approximately eight inches square. The railroad ties and hardware have been removed from this portion of the railroad bed, probably when it was abandoned. The railroad bed, itself, consists of four cm of river gravel with occasional river cobbles overlying the sandy silt borrowed from the area adjacent to the railroad bed. The railroad bed ranges from one to five feet above the existing ground surface, and is approximately 10 feet wide.

SUMMARY AND RESULTS

Most of Segment 1 of the US 17 widening between Jacksonville and New Bern was wet or disturbed. No archaeological resources were identified along Segment 1. Baseline documentation of the portion of the abandoned Seaboard railroad bed within Segment 1 has been made. Because the railroad track has been dismantled, this part of the railroad can provide only very limited information concerning late nineteenth-early twentieth century railroad construction techniques in North Carolina, and the Southeast in general. Further documentation of the railroad bed is unlikely to provide additional information about this portion of Seaboard railroad. The railroad bed is not associated with events that contributed to the broad patterns of history (criteria A), with the lives of persons of historical significance (criteria B), has no distinctive artistic or architectural merit (criteria C), nor is likely to contribute information significant to the study of history (criteria D). Because it meets none of the criteria for placement on the National Register of Historic Places, this portion of the railroad bed is recommended as not eligible to the National Register of Historic Places. There are no properties in the project area that are eligible for the National Register of Historic Places. As a result, no further work is recommended for Segment 1 of the US 17 widening between Jacksonville and New Bern.

REFERENCES CITED

Abbott, L. E., Jr., E. E. Sanborn, L. E. Raymer, L. D. O'Steen, W. Cleary, and G. C. Turner
1999 Data Recovery at 31CB114, Columbus County, North Carolina: Prehistoric
Settlement and Subsistence Practices within the Lower Cape Fear River Valley.
Report submitted to International Paper Company, Inc. Riegelwood, North
Carolina. Report prepared by New South Associates, Inc., Stone Mountain,
Georgia.

Barnhill, W. L.

1992 Soil Survey of Onslow County, North Carolina. U. S. Department of Agriculture, Natural Resources Conservation Service. Jacksonville.

Brown, J. P.

1960 *The Commonwealth of Onslow: A History.* The Owen G. Dunn Company. New Bern, North Carolina.

Brown, P. M.

1985 Geologic Map of North Carolina. Department of Natural Resources and Community Development. Raleigh.

Coe, J. L.

1964 The Formative Cultures of the Carolina Piedmont. *Transactions of the American Philosophical Society.* 54(5).

Hargrove, T.

Archaeological Excavations at 31NH142, Hamp's Landing, River Road Park, New Hanover County, North Carolina. Report submitted by Archaeological Research Consultants, Inc. to New Hanover County Department of Parks and Recreation, Wilmington, North Carolina.

Harmon, M. A. and R. J. Snedeker

1989 Croatan National Forest Draft Cultural Resources Overview: Carteret, Craven and Jones Counties, North Carolina. U. S. Department of Agriculture. National Forests in North Carolina. Asheville.

Herbert, J. M.

1997 Refining Prehistoric Culture Chronology in Southern Coastal North Carolina:
Pottery from the Papanow and Trail Sites. Report submitted to: Office of State
Archaeology, Division of Archives and History. Raleigh.

Jones, D. C., C. T. Espenshade, and L. Kennedy

1997 Archaeological Investigation at 31On190, Cape Island, Onslow County, North Carolina. Submitted to: Island Development, Inc. Riggold, VA by Garrow and Associates. Atlanta.

Jurney, R. C., R. E. Devereux, and E. H. Stevens

1923 Soil Survey of Onslow County, North Carolina. U. S. Department of Agriculture, Bureau of Soils. Washington.

Littleton, T. N.

1981 Archaeological and Historical Reconnaissance of U. S. marine Corps Base, Camp Lejeune. Part 2: The Historic Record. Prepared for the U. S. Department of the Navy. University of North Carolina, Wilmington.

Loftfield, T. C.

- 1979 Excavations at 31On^v 33, A Late Woodland Seasonal Village.Manuscript on file, Office of State Archaeology. Raleigh.
- 1981 Archaeological and Historical Survey of USMC Base Camp Lejeune. Manuscript on file, Office of State Archaeology. Raleigh.

Mathis, M. A.

1999 Oak Island: A Retiring Series. North Carolina Archaeology. 48:18-36.

McAvoy, J. M. and L. D. McAvoy

1997 Archaeological Investigations of Site 44Sx202, Cactus Hill, Sussex County, Virginia. Virginia Department of Historic Resources, Research Report Series No. I. Prepared by the Nottoway River Survey Archaeological Research. Nottoway River Survey Archaeological Research Report No. 2. Sandston, Virginia.

North Carolina State Highway and Public Works Commission

1938 Onslow County, North Carolina. Map on file, Wilson Library, North Carolina Collection. Chapel Hill.

Phelps, D.S.

Archaeology of the North Carolina Coastal and Coastal Plain: Problems and Hypotheses. In: *The Prehistory of North Carolina: An Archaeological Symposium*, M. Mathis and J. Crow, eds. N.C. Division of Archives and History, Raleigh.

Powell, W.S.

1989 North Carolina through Four Centuries. The University of North Carolina Press. Chapel Hill.

Reid, W. H., P. E. Pendleton, K. Simpson

1995 Cultural Resource Survey Greater Sandy Run Acquisition Area, Marine Corps Base Camp Lejeune. Volume I. Prepared by: The Cultural Resource Group Louis Berger & Associates, Inc. for Marine Corps Base Camp Lejeune. Camp Lejeune, North Carolina.

Sassaman, K. E.

- 1993 Early Pottery in the Southeast: Tradition and Innovation in Cooking Technology.
 The University of Alabama Press. Tuscaloosa.
- 1996 Technological Innovations in Economic and Social Contexts. In: *Archaeology* of the Mid-Holocene Southeast. K. E. Sassaman and D. G. Anderson, editors. The University Press of Florida. Gainesville.

Sharitz, R. R. and J. W. Gibbons

1982 The Ecology of Southeastern Shrub Bogs (Pocosins) and Carolina Bays: A Community Profile. U.S. Department of the Interior, Fish and Wildlife Service. Washington, D.C.

Sharpe, B.

1966 A New Geography of North Carolina. Volume II. Sharpe Publishing Company. Raleigh.

Swanton, J. R.

1987 The Indians of the Southeastern United States. Smithsonian Institution Press. Washington.

U. S. Post Office Department

1923 Rural Delivery Routes, Onslow County, North Carolina. Map on file, Wilson Library, North Carolina Collection. Chapel Hill.

MEMORANDUM

DATE:

December 9, 1999

TO:

Attendees

ATTENDEES:

Mr. Ron Elmore - NCDOT PD&EA Branch Ms. Gail Grimes - NCDOT PD&EA Branch Mr. Brian Yamamoto - NCDOT PD&EA Branch

Mr. Ted Bisterfeld - EPA

Mr. Tre' Dugal - Wilbur Smith Associates

FROM:

Tre' Dugal - Wilbur Smith Associates TD

SUBJECT:

US 17 Widening from North of Jacksonville to South of New Bern Onslow and Jones Counties, North Carolina, TIP No. R-2514.

State Project No. 8.T190301, Federal Aid Project No. NHF-17 (7).

(WSA Project No. 297420)

A meeting on the above subject project was held at 3:30 p.m., Wednesday, December 8, 1999, in Room 470, NCDOT Transportation Building. The purpose of this meeting was to present the additional alternatives that avoid and minimize impacts to National Register properties in the vicinity of Pollocksville to Mr. Bisterfeld as part of the requirements of Concurrence Point No. 2 of the NEPA/404 Process. This project is currently at Concurrence Point No. 2 in the NEPA/404 Process in accordance with previous steering committee agreement on "reasonable and feasible" alternatives to be studied (1/29/97 letter from Corps of Engineers). EPA agrees that Concurrence Point No. 1 has already been satisfied.

After discussing and evaluating the additional alternatives, Mr. Bisterfeld stated it may not be necessary to carry Alternate 4C from the Trent River to the north end of the project (Jones/Craven County Line) and Alternate 4I through detailed study. Mr. Bisterfeld concurs with the elimination of these alternatives only if everyone on the Team agrees that these alternates need not be carried forward.

A meeting will be held on Thursday, December 16, 1999 with the remaining members of the NEPA/404 Merger Team to reach concurrence on the alternatives to be carried forward.

Also at the meeting, avoidance and minimization for R-2514A (Segment 1 south of Belgrade/Maysville) were discussed. It was agreed upon that avoidance measures included the widening to the east using the previously disturbed railroad right-of-way adjacent to the existing alignment. By widening to the east, impacts to the historic Hofmann Forest Headquarters complex and longitudinal encroachment to Starkys Creek and other high quality wetlands were avoided. Minimization measures included the use of the previously developed railroad right-of-way and bridging of the lower limits of Starkys Creek.

This is my understanding of the discussions during the aforementioned meeting. Please sign and date if you concur with the above statements.

Mr. Ted Bisterfeld, EPA

Date^r

Ms. Gail Grimes, NCDOT PD&EA

			WE	WETLAND PERMIT IMPACT SUMMARY	MIT IMPACT	SUMMARY					
				WETLAND IMPACTS	IMPACTS			S	URFACE WA	SURFACE WATER IMPACTS	S
						Mechanized				Existing	Natural
Site	Station	Structure		Temp. Fill		Clearing	Drained	Fill In SW	Temp. Fill	Channel	Stream
ė Ž	(From/To)	Size / Type	Wetlands (Hectares)	In Wetlands (Hectares)	In Wetlands (Hectares)	(Method III)	Wetlands (Hectares)	(Natural)	In SW (Hectares)	Impacted (Meters)	Design (Meters)
-	105+66 - 105+99 RT	900 mm RCP	0.031		0.015	0.00	(20,1200,1)	(20, 20, 20, 1)	(20,000,00)	(2)	(MORGIS)
2	106+01 - 106+04 LT	900 mm RCP						0.003		16	
ဗ	106+98 - 107+26 RT		0.039		0.005		0.016				
4	107+48 - 107+63 CL		0.005								
4 4	107+70 LT	600mm RCP	0.099				0.007	0.001		8	
2	107+60 - 111+40 RT		0.099			0.007					
9	107+61 - 110+64 RT		0.049		960.0	0.086	0.243				
7	110+58 - 111+65 RT		0.244								
∞	111+26 - 111+73 LT		0.003		0.008	0.010					
8	111+80 - 111+88 LT					0.002					
6	111+66 - 112+12 RT	2.1 x 2.1 RCBC	0.049								
10	112+10 - 112+77 RT	(same culvert as site 9)	0.023		0.006		0.022	0.013		96	
10A	112+08 LT	(same culvert as site 9)			0.001	0.021		0.000		2	
=	114+23 - 114+43 RT		0.005			0.004					
12	114+54 - 116+69 RT	450 RCP	0.344		0.010	0.064	0.017				
12A	114+60 - 114+90 LT	(same pipe as site 12)			0.003	0.004					
13	116+81 - 119+83 RT	750 RCP	0.521		0.070	0.083	0.088				
13A	119+48 - 119+66 LT	(same pipe as site 13)			0.003	0.005					
14	120+08 - 129+26 RT	600 RCP	1.930		0.024	0.122					
15	124+48 - 125+75 RT	(same pipe as site 14)			0.011	0.029					
15A	125+57 - 125+79 LT	(same pipe as site 14)			0.004	0.007					
16	125+80 - 142+50 RT		0.093		0.470	0:330	0.134				
17	Not Used										
TOTALS	S:		3.534	0	0.726	0.782	0.528	0.017	0	117	0
									- Contract of		

NCDOT

DIVISION OF HIGHWAYS
ONSLOW COUNTY
PROJECT 8.T190301 (R-2514A)
US 17 NORTH OF
JACKSONVILLE
TO SOUTH OF BELGRADE

REV 04/12/04

SHEET 78 OF 81

g:\ra00\02201\cad\permits\WetlandPermitSummaryM.xls

i

00000

	+	_			Т	1	Ī	I	Τ	Τ	Τ	T			Γ	Π	Τ	Τ	Т	T	Τ		Γ					
	15		Stream	Design (Meters)																							0	4YS 2514A) ADE
	TER IMPAC	Existing	Channel	(Meters)	(200																						0	NCDOT ISION OF HIGHWA ONSLOW COUNTY ECT 8.T190301 (R-1) US 17 NORTH OF JACKSONVILLE SOUTH OF BELGRA
	SURFACE WATER IMPACTS		Temp. Fill	(Hectares)	,																						0	11 2 5 11 1
	S	Г	Fill In SW	(Natural) (Hectares)																							0	11 01
			Drained	(Hectares)									0.040	0.015	0.000												0.055	
SUMMARY		Mechanized	Clearing	(Method III)		0.006	0.000		0.006	0.005	0.015	0.003	0.007	0.016	0.010	0.000	0.016	0.011			0.031			0.003			0.131	
WETLAND PERMIT IMPACT SUMMARY	IMPACTS	i	Excavation	(Hectares)		0.005	0.000		0.002	0.001	0.031	0.001	0.041	0.028	0.002	0.000							4			0.008	0.119	T y
TLAND PER	WETLAND		Temp. Fill	(Hectares)																							0	g:Va00002201kcadpermits\WetlandPermitSummaryM.xls
WE			Fill In	(Hectares)	0.331		0.002	1.856								0.111		0.001		0.042		0.110	0.009	0.000	0.155		2.616	g:\ra00\02201\cad\pe
			Structure	adk i /azic	375 mm RCP	900 mm RCP			600 mm RCP	600 mm RCP	600 mm RCP	600 mm RCP	375 mm·RCP	600 mm RCP	600 mm RCP													File:
			Station	(0)	129+35 - 132+32 RT	132+47 - 132+64 LT	132+60 - 132+63 CL	133+56 - 147+60 RT	136+00 - 136+15 LT	140+54 - 140+69 LT	144+20 - 145+00 RT	144+30 - 144+45 LT	145+22 - 146+97 RT	147+05 - 148+64 RT	148+20 - 148+35 LT	149+06 - 150+63 RT	149+02 - 150+33 RT	150+55 - 151+05 RT	Not Used	150+68 - 151+37 RT	151+41 - 153+07 RT	151+84 - 152+76 RT	153+13 - 153+51 RT	153+32 - 153+49 RT	154+40 - 156+76 RT	156+97 - 157+18 RT		r. Form Revised 3/22/01
			Site	<u>.</u>	18	19	20	21	21A	21B	22	22A		24	24A	25	25A	26	27	28	29	30	31	32	33	34	TOTALS:	2

			8	/ETLAND PE	RMIT IMPAC	WETLAND PERMIT IMPACT SUMMARY	\				
				WETLAND IMPACTS	IMPACTS			•	SURFACE WATER IMPACTS	TER IMPACTS	
	_					Mechanized				Existing	Natural
Station		Structure	Fill In	Temp. Fill	Excavation	Clearing	Drained	Fill In SW	Temp. Fill	Channel	Stream
(From/10)		Size / Iype	Wetands (Hectares)	in wetlands (Hectares)	In wetlands (Hectares)	(Method III) (Hectares)	Wetlands (Hectares)	(Natural) (Hectares)	In SW (Hectares)	(Meters)	Design (Meters)
156+92 - 160+40 RT	묾		0.308							(5)	(2020)
159+14 - 160+35 RT	RT				660.0						
160+40 - 162+10 RT	RT	2 @ 2.1w x 1.8h RCBC	0.192		0.039	0.043		0.00		41	
161+38 LT		(same culvert as site 37)				0.010				18	
162+52 - 169+43 RT	3 RT		0.814					0.002	*		*
163+77 - 163+96 RT	6 RT				0.003	0.017				20	
162+52 - 169+26 RT	26 RT	600 mm RCP	0.156		0.274	0.204	0.002				
164+76 - 167+38 LT	38 LT		0.004			0.059					
168+24 - 168+64 LT	64 LT					0.004					
169+59 - 170+34 LT	34 LT					0.007					
170+35 - 173+39 RT	39 RT				0.039	0.000	0.018				
171+69 - 174+29 CL	29 CL		0.290								
173+58 - 174+25 LT	-25 LT	600 mm RCP	0.016			0.042					
173+70 - 176+59 RT	59 RT				0.101	0.008					
174+56 - 174+82 CL	82 CL		0.023								
174+56 - 175+48 LT	48 LT	600 mm RCP	0.019		0.010	0.074					
175+08 - 176+91 RT	91 RT		0.074								
Not Used											
176+61 - 176+83 LT	83 LT		0.002		0.008		0.007				
177+07 - 177+88 LT	88 LT	0.9m Base Tail Ditch	0.016		0.044	0.075	0.034				
179+13 - 179+30 LT	-30 LT	0.9m Base Tail Ditch						0.001		20	
181+51 - 182+79 CN	79 CN	Bridge	0.117			0.022					
			2.031	0	0.618	995.0	0.061	0.011	0	120	0

NCDOT

DIVISION OF HIGHWAYS
ONSLOW COUNTY
PROJECT 8.T190301 (R-2514A)
US 17 NORTH OF
JACKSONVILLE
TO SOUTH OF BELGRADE

* No Mitigation Required (Intermittent Stream in Site 38)

8

SHEET 80 OF

	1																		 	 		 	,		
		Natural	Design	(Meters)																	0	0			YS (514A)
	ER IMPACTS	Existing	Impacted	(Meters)																	0	237		OT	F HIGHWA 7 COUNTY 90301 (R-2
	SURFACE WATER IMPACTS	Tomp	In SW	(Hectares)																	0	0		NCDOT	DIVISION OF HIGHWAYS ONSLOW COUNTY PROJECT 8.T190301 (R-2514A)
	S	Eill In CM	(Natural)	(Hectares)																	0	0.028			DRG PRG
		Drainod	Wetlands	(nectares)											0.008						0.008	0.652		K PAD.	RK PAD.
SUMMARY	TS	Mechanized	(Method III)	(nectares)	0.020	0.004	0.082					0.005	0.016	0.020		0.035	0.017	0.025			0.278	1.757		D AND WOR	AD AND WO
MIT IMPACT	WETLAND IMPACTS	T vovation	In Wetlands	(nectares)							0.004		0.014	0.011	0.001	0.071	9000				0.108	1.571		CESS ROA	CCESS RO
WETLAND PERMIT IMPACT SUMMARY	WET	Tomp Fill	In Wetlands	(nectares)																	0	0		FOR TEMPORARY ACCESS ROAD AND WORK PAD.	FOR TEMPORARY ACCESS ROAD AND WORK PAD
WE		<u>2</u>	Wetlands	(nectares)	0.040	0.191	0.067		0.208	0.013	0.054		0.081	0.015		0.126	0.002	600.0			0.871	9.052			
		Office	Size / Type	Bridge	Bridge	Bridge							600 mm RCP				600 mm & 900 mm RCP							* SITE 55 - 0.064 ha INCLUDES 0.022 ha OF FILL	* SITE 56 - 0.0398 ha INCLUDES 0.019 ha OF FIL
		Ctetion	(From/To)	181+70 - 182+701T	182+97 - 185+66 LT	183+00 - 185+05 CN	183+07 - 185+67 RT	Not Used	185+20 - 192+33 RT	185+23 - 185+57 CN	185+40 - 188+36 RT	185+80 - 186+13 RT	188+44 - 192+19 RT	192+76 - 193+31 LT	193+65 - 193+77 RT	193+88 - 195+54 RT	195+28 - 195+75 LT	196+77 - 197+44 RT			SHEET TOTALS:	PROJECT TOTALS:		* SITE 55 - 0.064 ha IN	* SITE 56 - 0.0398 ha
		ŭ.	S S	55	26	22	28	29	9	61	62	63	64	64A	92	99	29	89			SHEET	PROJEC			

PROJECT 8.T190301 (R-2514A)
US 17 NORTH OF
JACKSONVILLE
TO SOUTH OF BELGRADE

SHEET 81 OF 8

Form Revised 3/22/01

	_				_		_	_	_				_	_		-	_					_	_		_			_			
		Natural	Stream	Design (Feet)																								0		į	YS
	TER IMPACTS	Existing	Channel	Impacted (Feet)		52			10							315	7											384	NCDOT		F HIGHWA / COUNTY
	SURFACE WATER IMPACTS		Temp. Fill	In SW (Acres)																								0	NCI		DIVISION OF HIGHWAYS ONSLOW COUNTY
	S		Fill In SW	(Natural) (Acres)		0.008			0.001							0.031	0.001											0.04			
			Drained	Wetlands (Acres)			0.041		0.017		0.601					0.054			0.042		0.219					0.331		1.30			
SUMMARY		Mechanized	Clearing	(Method III) (Acres)	0.022					0.017	0.212		0.024	9000			0.051	0.010	0.158	0.010	0.204	0.012	0.301	0.073	0.017	0.816		1.93			
MIT IMPACT	IMPACTS	:	Excavation	In Wetlands (Acres)	0.038		0.014				0.236		0.019			0.014	0.003		0.024	0.008	0.172	0.008	0.060	0.026	0.010	1.162		1.79			
WETLAND PERMIT IMPACT SUMMARY	WETLAND IMPACTS	i	Temp. Fill	In Wetlands (Acres)										-														0			
WE		·		Wetlands (Acres)	0.076		960.0	0.011	0.244	0.244	0.121	0.604	0.007		0.122	0.057		0.013	0.851		1.288		4.768			0.230		8.73			
		•	Structure	Size / Iype	36" RCP	36" RCP			24" RCP						7' x 7' RCBC	(same culvert as site 9)	(same culvert as site 9)		18" RCP	(same pipe as site 12)	30" RCP	(same pipe as site 13)	24" RCP	(same pipe as site 14)	(same pipe as site 14)						ENGLISH
		:	Station	(From/10)	105+66 - 105+99 RT	106+01 - 106+04 LT	106+98 - 107+26 RT	107+48 - 107+63 CL	107+70 LT	107+60 - 111+40 RT	107+61 - 110+64 RT	110+58 - 111+65 RT	111+26 - 111+73 LT	111+80 - 111+88 LT	111+66 - 112+12 RT	112+10 - 112+77 RT	112+08 LT	114+23 - 114+43 RT	114+54 - 116+69 RT	114+60 - 114+90 LT	116+81 - 119+83 RT	119+48 - 119+66 LT	120+08 - 129+26 RT	124+48 - 125+75 RT	125+57 - 125+79 LT	125+80 - 142+50 RT	Not Used	::			
		į	Site	o Z	1	2	3	4	4A	2	9	7	80	8A	6	10	10A	11	12	12A	13	13A	14	15	15A	16	17	TOTALS			

ONSLOW COUNTY
PROJECT 8.T190301 (R-2514A)
US 17 NORTH OF
JACKSONVILLE
TO SOUTH OF BELGRADE

SHEET 814 OF

000

g:\ra00\02201\cad\permits\WetlandPermitSummaryM.xls

Form Revised 3/22/01

			WE	TLAND PER	WETLAND PERMIT IMPACT SUMMARY	SUMMARY					
				WETLAND	IMPACTS				SURFACE W	SURFACE WATER IMPACTS	S
Site No.	Station (From/To)	Structure Size / Type	Fill In Wetlands	Temp. Fill In Wetlands	Excavation In Wetlands	Mechanized Clearing (Method III)	Drained Wetlands	Fill In SW (Natural)	Temp. Fill In SW	Existing Channel Impacted	Natural Stream Design
+			(Acres)	(Acres)	(Acres)	(Acres)	(Acres)	(Acres)	(Acres)	(Feet)	(Feet)
\dashv	129+35 - 132+32 RT	15" RCP	0.818								
	132+47 - 132+64 LT	36" RCP			0.013	0.014					
20 1	132+60 - 132+63 CL		0.004								
21 1	133+56 - 147+60 RT		4.587								
21A .	136+00 - 136+15 LT	24" RCP			9000	0.015					
21B 1	140+54 - 140+69 LT	24" RCP			0.002	0.013					
22	144+20 - 145+00 RT	24" RCP			0.076	0.037					
22A 1	144+30 - 144+45 LT	24" RCP			0.001	0.008					
23 1	145+22 - 146+97 RT	15" RCP			0.101	0.019	0.098				
24 1	147+05 - 148+64 RT	24" RCP			690.0	0.040	0.037				
24A 1	148+20 - 148+35 LT	24" RCP			0.004	0.024					
25 1	149+06 - 150+63 RT		0.273								
25A 1	149+02 - 150+33 RT					0.040					
	150+55 - 151+05 RT		0.002			0.027					
27	Not Used										
	150+68 - 151+37 RT		0.103								
29 1	151+41 - 153+07 RT					0.077					
	151+84 - 152+76 RT		0.271								
31 1	153+13 - 153+51 RT		0.022								
	153+32 - 153+49 RT		0.001			0.008					
33 1	154+40 - 156+76 RT		0.383								
34 1	156+97 - 157+18 RT				0.021						
TOTAL O			8 48		oc c	ccc	77				,
375			0.40		0.29	0.32	4			0	>
									NCI	NCDOT	
		ENGLISH						<u></u>	ONSTON CONSTON	DIVISION OF HIGHWAYS ONSLOW COUNTY	YS
								PRC	JECT 8.T1 US 17 N	CCT 8.T190301 (R-2 US 17 NORTH OF JACKSONVILLE	2514A)
								T.	SOUTH (TO SOUTH OF BELGRADE	ADE
i.	POSCOL POSICE DE PROPERTOR DE POSICE	ä	alv Manager and Charlette (Almanda and Anacharla)	Otto (All All All Annual Colors)	A Marcon			SHEET	81A 08	0/	

			S	WETLAND PERMIT IMPACT SUMMARY	RMIT IMPAC	T SUMMAR					
				WETLAND IMPACTS	IMPACTS				SURFACE WA	SURFACE WATER IMPACTS	
						Mechanized				Existing	Natural
Site	Station	Structure	ᄪ	Temp. Fill	Excavation	Clearing	Drained	Fill In SW	Temp. Fill	Channel	Stream
o Z	(From/10)	Size / Iype	Wetlands (Acres)	In Wetlands (Acres)	In Wetlands	(Method III)	Wetlands (Acres)	(Natural)	In SW	Impacted	Design
35	156+92 - 160+40 RT		0.760				(25)	(20.5)	(2010)	(1001)	(1991)
36	159+14 - 160+35 RT				0.245						
37	160+40 - 162+10 RT	2 @ 7' w x 6' h RCBC	0.475		0.097	0.107		0.021		135	
37A	161+38 LT	(same culvert as site 37)				0.025				29	
88	162+52 - 169+43 RT		2.012					0.005	*	* 99	
38A	163+77 - 163+96 RT				0.008	0.043				99	
39	162+52 - 169+26 RT	24" RCP	0.387		0.677	0.503	900.0				
40	164+76 - 167+38 LT		0.011			0.147					
41	168+24 - 168+64 LT					0.010					
42	169+59 - 170+34 LT					0.017					
43	170+35 - 173+39 RT				0.097		0.045				
44	171+69 - 174+29 CL		0.716								
45	173+58 - 174+25 LT	24" RCP	0.038			0.105					
46	173+70 - 176+59 RT				0.250	0.020					
47	174+56 - 174+82 CL		0.057								
48	174+56 - 175+48 LT	24" RCP	0.047		0.026	0.183					
46	175+08 - 176+91 RT		0.183								
20	Not Used										
51	176+61 - 176+83 LT		900.0		0.019		0.018				
25	177+07 - 177+88 LT	3.0' Base Tail Ditch	0.039		0.108	0.186	0.083				
53	179+13 - 179+30 LT	3.0' Base Tail Ditch								99	
54	181+51 - 182+79 CN	Bridge	0.288			0.053					
TOTALS			5.02	0	1.53	1.40	0.15	0.03	0	392	0

NCDOT

* No Mitigation Required (Intermittent Stream in Site 38)

ENGLISH

DIVISION OF HIGHWAYS
ONSLOW COUNTY
PROJECT 8.T190301 (R-2514A)
US 17 NORTH OF
JACKSONVILLE
TO SOUTH OF BELGRADE

SHEET 81C OF

0

			WE	WETLAND PERMIT IMPACT SUMMARY	MIT IMPACT	SUMMARY					
				WET	WETLAND IMPACTS	TS		<u> </u>	SURFACE WATER IMPACTS	TER IMPACTS	
						Mechanized				Existing	Natural
Site	Station	Structure	FIII	Temp. Fill	Excavation	Clearing	Drained	Fill In SW	Temp. Fill	Channel	Stream
ė Ž	(From/To)	Size / Type	Wetlands (Acres)	In Wetlands (Acres)	In Wetlands (Acres)	(Method III)	Wetlands (Acres)	(Natural) (Acres)	(Acres)	Impacted (Feet)	Design (Feet)
22	181+70 - 182+70 LT	Bridge	Г	*		0.049					
26	182+97 - 185+66 LT	Bridge		*		0.134					
25	183+00 - 185+05 CN	Bridge	0.472			0.011					
28	183+07 - 185+67 RT		0.166			0.202					
29	Not Used										
09	185+20 - 192+33 RT		0.513								
61	185+23 - 185+57 CN		0.033								
62	185+40 - 188+36 RT		0.134		0.011						
63	185+80 - 186+13 RT					0.013					
64	188+44 - 192+19 RT	24" RCP	0.200		0.035	0.040					
64A	192+76 - 193+31 LT		0.038		0.028	0.049					
65	193+65 - 193+77 RT				0.002		0.019				
99	193+88 - 195+54 RT		0.312		0.177	0.086					
29	195+28 - 195+75 LT	24" & 36" RCP	0.004		0.014	0.043					
89	196+77 - 197+44 RT		0.023			0.061					
1			2 452	c	0.067	7880	0.040	c	c	c	
חחוט	101245.		201.7		0.50	00.0	200			>	
			70.00		80 6	131	1 50	200	000	776	
TRONE TA	PROJECT TOTALS:		1 22.37		3.00	4.34	8C.1	0.0	0.00	0//	
	* SITE 55 - 0.16 ac. INCLUDES 0.05 ac. OF FILL FOR TEMPORARY ACCESS ROAD AND WORK PAD.	CLUDES 0.05 ac. OF F	FILL FOR TEM	PORARY AC	CESS ROAD	AND WORK	PAD.		NCI	NCDOT	

DIVISION OF HIGHWAYS
ONSLOW COUNTY
PROJECT 8.T190301 (R-2514A)
US 17 NORTH OF
JACKSONVILLE
TO SOUTH OF BELGRADE

ENGLISH

* SITE 56 - 0.10 ac. INCLUDES 0.05 ac. OF FILL FOR TEMPORARY ACCESS ROAD AND WORK PAD.

SHEET NO OF

 $\overset{\smile}{\sim}$

US 17 WIDENING From SR 1327/1410 North of Jacksonville to SR 1330/1439 South of Belgrade/Maysville

Onslow County, North Carolina Federal Aid Project No. NHF-17(7) State Project No. 8.T190301 T.I.P. No. R-2514A

ON-SITE MITIGATION REVIEW

Prepared for: North Carolina Department of Transportation

Prepared by: Rummel, Klepper & Kahl, LLP
Consulting Engineers

5800 Faringdon Place, Suite 105

Raleigh, NC 27609 (919) 878-9560

I. Introduction

The proposed project will consist of widening the existing two-lane roadway to a four-lane divided roadway with two 3.6-meter (12-foot) travel lanes in each direction divided by a 14-meter (46-foot) median. Limiting access to one per property will provide partial control of access. The primary purpose being to up-grade this section of US 17 to a modern, high speed, multi-lane facility.

The documentation for this project in the form of an Environmental Assessment (EA), a Finding of No Significant Impact (FONSI), and associated background studies have been completed. All documents and findings were presented to resource agencies such as the U. S. Army Corps of Engineers (COE) and N. C. Department of Cultural Resources (SHPO); as well as to local citizens and government bodies. A permit from the COE will be required for this project under the provisions of Section 404 of the Clean Water Act. A Section 401 Water Quality Certification will also be required.

II. Jurisdictional Impacts

Unavoidable impacts will occur to jurisdictional areas as a result of the proposed project. These impacts are as follows:

Jurisdictional Stream Impacts

◆ Starky's Creek (perennial) - Extend existing RCBC - 8 m (26 feet)

Jurisdictional Waters of the U.S. Impacts

♦ PF04

(palustrine, forested, needle-leaved evergreen) - 0.9 ha (2.2 ac)

◆ PF04/1

(palustrine, forested, needle-leaved evergreen/broad-leaved deciduous) 1.5 ha (3.7 ac)

◆ PF01

(palustrine, forested, broad-leaved deciduous) - 1.0 ha (2.5 ac)

Total 9.9 ha (24.5 ac)

III. On-Site Mitigation Opportunities

There were no opportunities for stream restoration found in the project right-of-way. Near Kellum Loop Road, US 17 crosses over an unnamed tributary to Northeast Creek and north of the Town of Deppe, US 17 crosses over Starkey's Creek. The banks of both streams appeared to be stable and vegetated. Due to the minor length of jurisdictional stream impacts (< 150 feet), no compensatory mitigation is required for the A-segment of the proposed widening.

The unavoidable impacts to Waters of the U.S. total 3.4 ha (8.4 ac) for the A-segment of the proposed widening. Compensatory mitigation is recommended for these unavoidable losses. Limited opportunities are available for mitigation in the project vicinity for in-kind mitigation (See Figure 2). Because restoration of wetlands within silvicultural areas or enhancement of pre-ditching hydrology in these areas may not be compatible with efficient timber production practices, mitigation options in these areas may not be compatible with efficient timber production practices.

Considering the 10.29 km (6.4 mi) A-section of R-2514 in two smaller segments, the first segment (See Figure 1) begins at SR 1327 (Kellum Loop Road) and extends to the Town of Deppe. This segment passes through the Hofman Forest for approximately 4.8 km (3 mi). On the southeastern side of the existing highway an abandoned CSX railbed parallels the highway. Located to the east of this railroad bed is a forest road used to maintain the loblolly pine plantation that parallels the existing railroad bed. The distance from existing US 17 to the railroad bed varies. Approximately 0.8 km (0.5-mi) north of Kellum Loop Road the railroad bed gradually angles away from, and then back to the existing highway for approximately 1.6 km (1 mi), where it resumes a close parallel alignment with the highway. At its farthest distance from the highway, the railroad bed is approximately 92 m (300 ft) away. The alignment for the remainder of the project is approximately 23 m (75 ft) from the highway.

On the east side of the forest road a ditch has been constructed to improve drainage in the loblolly pine plantation. Wetland mitigation may be possible on some of the loblolly pine plantation areas east of the proposed alignment by filling the ditch and reducing the rate of drainage from these areas. The entire length of this forest road was surveyed

US 17 Widening Onslow County, North Carolina T.I.P. No. R-2514A Page 3 of 3

and the drained loblolly pine plantation areas appear from the soil color and topography to be drained pocosin or bottomland areas, and a probable wetland restoration candidate. However, in talking with Dr. E. Carlyle Franklin, the Faculty Representative to the North Carolina Forestry Foundation that manages the Hofman Forest, it was learned that the Foundation would probably not view the conversion of productive forest land to mitigation sites favorably. Dr. Franklin did suggest that mitigation for the highway could be obtained from a wetland mitigation bank being developed by the Foundation in the Hofman Forest, approximately 7.2 km (4.5 mi) northwest of the southern terminus of this project, on the southeastern side of SR 1938 (Quaker Bridge Road). He indicated that the Mitigation Banking Instrument (MBI) is expected to be signed in January 2002, and that there would be 60 credits immediately available for sale. Dr. Franklin's contact information is as follows:

Dr. Carlyle Franklin
N.C. State University
Department of Forestry, Box 8006
Raleigh, N.C. 27695

Telephone: 919-513-3852

E-mail: Carlyle_Franklin@ncsu.edu

The second segment (See Figure 1) begins at the Town of Deppe and extends northward to SR 1330 (Deppe Loop Road), no wetland restoration opportunities were found within the proposed right-of-way.

IV. Conclusion

While compensatory mitigation opportunities exist along the proposed widening of existing US 17, trustees of Hofman Forest are not expected to be agreeable in allowing the purchase of additional right-of-way. Therefore, off-site resources such as the planned bank in Hofman Forest or the Clay Hills Farms Mitigation Site should be utilized. In addition, the North Carolina Wetland Restoration Program (WRP) may be available to mitigate impacts in HU 03020106.

Abandoned railroad located east of US 17, south of SR 1330 (Deppe Loop Rd.) crossing.

Footbridge crossing ditch in Hoffman Forest on east side of US 17.

Ditch located on east side of abandoned railroad along US 17.

USACE AID#	DWQ #	Site #	(indicate on attached map)
00.102.11			

Provide the following information for the stream reach	under assessment:
1. Applicant's name: NC DO T	2. Evaluator's name:
3. Date of evaluation: 3/17/04	4. Time of evaluation: 10:30
5. Name of stream: ITto NE Creek	6. River basin: Vew River
7. Approximate drainage area: Site 2	8. Stream order:
9. Length of reach evaluated: \oo \(\)	10. County: Onslow
11. Site coordinates (if known):	12. Subdivision name (if any):
13. Location of reach under evaluation (note nearby roads a	and landmarks and attach map identifying stream(s) location): US 17
14. Proposed channel work (if any): Culues	
15. Recent weather conditions: Ran win	24 hes
16. Site conditions at time of visit:	
	Section 10Tidal WatersEssential Fisheries Habitat
	Nutrient Sensitive WatersWater Supply Watershed(I-IV)
	on point? YES NO If yes, estimate the water surface area:
19. Does channel appear on USGS quad map? YES NO	Marie Control of the
	10% Commercial% Industrial% Agricultural
	55% Cleared / Logged% Other ()
22. Bankfull width: 2-3+4	23. Bank height (from bed to top of bank): 4Fd
• •	%)Gentle (2 to 4%)Moderate (4 to 10%)Steep (>10%)
	sFrequent meanderVery sinuousBraided channel
Instructions for completion of worksheet (located on plocation, terrain, vegetation, stream classification, etc. Ever each characteristic within the range shown for the ecoregio identified in the worksheet. Scores should reflect an overall be evaluated due to site or weather conditions, enter 0 in the there are obvious changes in the character of a stream under	page 2): Begin by determining the most appropriate ecoregion based on ry characteristic must be scored using the same ecoregion. Assign points to m. Page 3 provides a brief description of how to review the characteristics assessment of the stream reach under evaluation. If a characteristic cannot the scoring box and provide an explanation in the comment section. Where the review (e.g., the stream flows from a pasture into a forest), the stream may and a separate form used to evaluate each reach. The total score assigned the of 100 representing a stream of the highest quality.
gathering the data required by the United States Arr	Date 3 17 04 lly as a guide to assist landowners and environmental professionals in my Corps of Engineers to make a preliminary assessment of stream n of this form is subject to USACE approval and does not imply a

particular mitigation ratio or requirement. Form subject to change – version 06/03. To Comment, please call 919-876-8441 x 26.

# CHARACTERISTICS	ECOREG Coastal	ION POINT RANGE Piedmont Mountain	SCORE
Presence of flow / persistent pools in stream (no flow or saturation = 0; strong flow = max poin	ts) *:0=5	10-4-11-21-160-5	4
Evidence of past human alteration (extensive alteration = 0; no alteration = max points)	The state of the s	10°+5°+1° 4°+10°+5°	
Riparian zone (no buffer =0; contiguous, wide buffer = max points)	nts) 4 0-6	0-4 0-5	2
4 Evidence of nutrient or chemical discharges (extensive discharges = 0; no discharges = max poi	nts) 0 – 5	0 4 0 4	4
Groundwater discharge (no discharge = 0; springs, seeps, wetlands, etc. = max	points) 0 - 3 1 1	10 14 17 300 -4	0
Presence of adjacent floodplain (no floodplain = 0; extensive floodplain = max poi	nts) (0-4	40-4	O
7 (deeply entrenched = 0; frequent flooding = max po	ints) 1 0 - 5	0-2	764 255
Presence of adjacent wetlands (no wetlands = 0; large adjacent wetlands = max po	ints) = 20-6	0-4	
Ghannel sinuosity *(extensive channel lization = 0; natural meander = max	points) 05	$\lim_{n\to\infty} \left(0 - \frac{4}{1-4} \right) = \lim_{n\to\infty} \left(0 - 3 \right)$	241 244 1
Sediment input (extensive deposition=0; little or no sediment – max)	points) 3 = 10-5 = 1	$0 = 4$ $\frac{1}{2} = \frac{1}{2} = \frac{1}{2$	1
Size & diversity of channel bed substrate (fine, homogenous = 0, large, diverse sizes = max po	oints) NA*	0 4 2 0 0 5	0
Evidence of channel incision or widening (deeply incised = 0; stable bed & banks = max points)	nts) — 0—5	0-4 0-5	0
Presence of major bank failures (severe erosion = 0; no erosion, stable banks = max po	oints) 0-5	0-5 0-5	3.
Root depth and density on banks (no visible roots = 0, dense roots throughout = max p		0-4	3
Impact by agriculture, livestock, or timber production (substantial impact =0; no evidence = max.points) Presence of riffle-pool/ripple-pool complexes		0-4	4.
(no riffles/ripples or pools = 0; well-developed = max.		0-6	3
Habitat complexity (little or no habitat = 0; frequent, varied habitats = max Canopy coverage over streambed	China Carrier Company	0-6	2
(no shading vegetation = 0; continuous canopy = max Substrate embeddedness	Statement Company	0-5 0-5	2
(deeply embedded = 0; loose structure = max)	NA*	0-4	
$\frac{20}{100}$ (no evidence = 0) common numerous types = may no	oints) 0-4	0-5	98 al
(no evidence = 0; common, numerous types = max p	SURE NAME OF THE PARTY OF THE P	0-4 0-4	
Tyldence of wildlife use	THE THE THEFT INTERIORS INCOME.	0-4	
(no evidence = 0; abundant evidence = max point	di Distriction de grantich liftenst sammes	0-5	
Total Points Possible	100	100	
* These characteristics are not assessed in coastal streams	ter on first page)		35

^{*} These characteristics are not assessed in coastal streams.

USACE AID#	DWQ #	Site #	(indicate on attached	map)
------------	-------	--------	-----------------------	------

Provide the following information for the stream reach un	nder assessment:
1. Applicant's name: UCD OT	2. Evaluator's name:
3. Date of evaluation: 311\104	4. Time of evaluation: 10 40
5. Name of stream: UT to NE Creet	6. River basin: New Rive
7. Approximate drainage area: Site 4A	8. Stream order:
9. Length of reach evaluated: \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \ \\ \	10. County: 0 入 い し い
11. Site coordinates (if known):	12. Subdivision name (if any):
13. Location of reach under evaluation (note nearby roads and	d landmarks and attach map identifying stream(s) location):
14. Proposed channel work (if any): Colver +	
15. Recent weather conditions: \(\sum_{\alpha} \) \(\sum_{\alpha} \)	in 24 hrs
16. Site conditions at time of visit:	
17. Identify any special waterway classifications known:	Section 10Tidal WatersEssential Fisheries Habitat
	Nutrient Sensitive WatersWater Supply Watershed(I-IV)
18. Is there a pond or lake located upstream of the evaluation	point? YES NO If yes, estimate the water surface area:
19. Does channel appear on USGS quad map? YES	20. Does channel appear on USDA Soil Survey? YES NO
21. Estimated watershed land use: Residential	% Commercial% Industrial% Agricultural
<u>SS</u> % Forested	% Cleared / Logged% Other (
22. Bankfull width: Non Checue	23. Bank height (from bed to top of bank): 5-7F
24. Channel slope down center of stream:Flat (0 to 2%)	Gentle (2 to 4%)Moderate (4 to 10%)Steep (>10%)
25. Channel sinuosity:StraightOccasional bends	Frequent meanderVery sinuousBraided channel
Instructions for completion of worksheet (located on palocation, terrain, vegetation, stream classification, etc. Every each characteristic within the range shown for the ecoregion identified in the worksheet. Scores should reflect an overall abe evaluated due to site or weather conditions, enter 0 in the there are obvious changes in the character of a stream under respectively.	age 2): Begin by determining the most appropriate ecoregion based on characteristic must be scored using the same ecoregion. Assign points to Page 3 provides a brief description of how to review the characteristics assessment of the stream reach under evaluation. If a characteristic cannot escoring box and provide an explanation in the comment section. Where review (e.g., the stream flows from a pasture into a forest), the stream may and a separate form used to evaluate each reach. The total score assigned
Total Score (from reverse): 33 Comm	ents: Int
gathering the data required by the United States Army	Date

particular mitigation ratio or requirement. Form subject to change – version 06/03. To Comment, please call 919-876-8441 x 26.

H # GHARACHERISHES		HONPOR	med spice (Carrier of the	SCORE
Presence of flow/persistent pools in stream	Goastal October 10 - 25 The	Piedmont	Mountain 10-5	
2. (Elevidence: Of past human alteration (extensive alteration (0; mo alteration max points)	10=6	2 0-553	4 50-5	
Riparian zone (no biffer 0, contiguous, wide buffer max points)	40 ⁻² 6 22		**************************************	
24 Evidence of nutrient or schemical discharges 12 pa (extensive discharges 0 mordischarges max points)	0.5	2024		
Groundwater discharge (mordischarge 0, springs, seeps, wetlands, rete: -max-points)	2 di	F-0-30-4	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	2
Rresence of adjacent floodplain 1	40 2 4	30 2	10-12	
### ### ### ##########################	* 0 生 5 中野	10-14 10-24	0=12	30
Presence of adjacent wetlands. (morwellands 30; large adjacent wetlands max points)		360 _2 ;	40-245 245-245	0
Channelsinuosity are (extensive channelization 10 matural meander max points)	0.5	0-21	1 +1201-13***	1
Sedimentinput (extensive deposition=0; little or no sediment = maxipoints));	11:0-51		10 4	4
Size & diversity of channel the distribute and size sizes in appoints). Size & diverse sizes in appoints). Swidence of channel sincistons or widening.	10 -NA* 12 16	0=4	5-15	夏
a(deeplyincised 0 stable bedi&banks maxipoints)	0-5	第40 年	0.15	2
Root denth soull density and a stable banks in max points)	-0-5	20 75	1 0 = 5	32
(no visible roots =0; dense roots throughout manapoints) 20 20 20 20 20 20 20 20 20 20 20 20 20	0-13 14.	(3) 40 - 41 - 244 (4) - 41 - 444	0-1-5	N. S.
(substantial simpact=0; no evidence = max points) Presence of riftle=pool/ripple=pool/complexes	(* *0 = 5 * * * * * * * * * * * * * * * * * *	340=4, xs	1 10 —5 ()	
### ##################################	1033	3035	40 16	
Canopyscoverage overstreambed	0-6 y		34-30-6	
(noishading vegetation = 0, continuous canopy = max points) Substrate embeddedness	NA*		±0 ± 5 ± ± 0 = 4	0
(deeply:embedded=0:loose.structure=max) **Presence:of.stream:invertebrates (see page 4) **(no.evidence=0:common:numerous.types=max.points)	0-4	*.0=5	Property of the second	
Presence of amphibians (no evidence = 0; common numerous types = max points) (no evidence = 0; common, numerous types = max points)	0-4	÷0±4	140-5 0-2	~
Presence of fish (no evidence = 0; common, numerous types = max points) Presence of fish (no evidence = 0; common, numerous types = max points)	10-4		0 -4	2
23 Evidence of wildlife use (no evidence = 0; abundant evidence = max points)	0-6	10-5	0-5	0
TotalPoints Possible	100	100	100	9
TOTAL SCORE (also enter on fi	rst page)			33
* These characteristics are not assessed in coastal streams.		mperiod to a contract in the second	A PART OF THE PART	

I hese characteristics are not assessed in coastal streams.

USACE AID#	DWQ #	Site #	(indicate on attached map)

TO Average Do God

STREAM QUALITY ASSESSMENT WORKSHEET

Provide the following information for the stream reach unc				
1. Applicant's name: Ve Do T	2. Evaluator's name: /s/			
3. Date of evaluation: 3/17/04	4. Time of evaluation:			
5. Name of stream: UT to NE Creat	6. River basin: New River			
7. Approximate drainage area: Site \O	8. Stream order:			
9. Length of reach evaluated: 100 Fer	10. County: Orshal			
11. Site coordinates (if known):	12. Subdivision name (if any):			
13. Location of reach under evaluation (note nearby roads and landmarks and attach map identifying stream(s) location):				
14. Proposed channel work (if any):				
15. Recent weather conditions: Recent weather conditions:	4 hrs			
16. Site conditions at time of visit:				
17. Identify any special waterway classifications known:	Section 10Tidal WatersEssential Fisheries Habitat			
Trout WatersOutstanding Resource Waters	Nutrient Sensitive WatersWater Supply Watershed(I-IV)			
18. Is there a pond or lake located upstream of the evaluation point? YES NO If yes, estimate the water surface area:				
19. Does channel appear on USGS quad map? YES NO	20. Does channel appear on USDA Soil Survey? YES NO			
21. Estimated watershed land use:% Residential	% Commercial% Industrial% Agricultural			
<u> </u>	% Cleared / Logged% Other ()			
22. Bankfull width:	23. Bank height (from bed to top of bank): 8-/07/			
	Gentle (2 to 4%)Moderate (4 to 10%) <u>Steep</u> (>10%)			
25. Channel sinuosity:StraightOccasional bends	Frequent meanderVery sinuousBraided channel			
Instructions for completion of worksheet (located on page 2): Begin by determining the most appropriate ecoregion based on location, terrain, vegetation, stream classification, etc. Every characteristic must be scored using the same ecoregion. Assign points to each characteristic within the range shown for the ecoregion. Page 3 provides a brief description of how to review the characteristics identified in the worksheet. Scores should reflect an overall assessment of the stream reach under evaluation. If a characteristic cannot be evaluated due to site or weather conditions, enter 0 in the scoring box and provide an explanation in the comment section. Where there are obvious changes in the character of a stream under review (e.g., the stream flows from a pasture into a forest), the stream may be divided into smaller reaches that display more continuity, and a separate form used to evaluate each reach. The total score assigned to a stream reach must range between 0 and 100, with a score of 100 representing a stream of the highest quality.				
Total Score (from reverse): Commer	nts:			
A HE ATT	الماديا م			
Evaluator's Signature	Date 3/17/14 as a guide to assist landowners and environmental professionals in			
gathering the data required by the United States Army	Corps of Engineers to make a preliminary assessment of stream f this form is subject to USACE approval and does not imply a			

particular mitigation ratio or requirement. Form subject to change – version 06/03. To Comment, please call 919-876-8441 x 26.

# GHARACTERISTICS	The state of the s	ION POINIA Biedmont	RANGE Mountain	SCORE
Presence of flow/persistent pools in stream (no flow or saturation=0 strong flow = max points)	0=5	40-4	10 35	5
(Extensive alteration = 0, no alteration = max points)	0=6	50-75 T	0 35	0
Riparian zone 3 (no buffer = 0 contiguous, widerbuffer = max points)	30 - 16 - 15 - 15 - 15 - 15 - 15 - 15 - 15	10-11-11	10:—5	4
##Evidence of nutrient or chemical discharges (extensive discharges = 0; no discharges = max points)	0-5	250 -24		0
21Groundwaterdischarge (modischarge 0; springs, seeps, wetlands; tetc:max_points)	# 10 a 3 a 1	5,20-47	0-4	1
Presence of adjacent floodplain 6. **Good floodplain **O sextens welf loodplain **max: points)************************************	10=4	0-4/11	0-2	0
### ### ### ##########################	114 × 10 2 14 15 14 15	6-1-10 - 21 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	0.12	Ó
Presence of adjacent wetlands (no wetlands = 0; large adjacent wetlands = max points):	+50 - 6 + 6	13.0 -24 5.5 5.4 5.4	20-22	0
Channelisinuosity (extensive channelization 10 matural meander = max points)	1015.43	0 4	10 <u>1</u> 3	0
32(0) a sale	10-5 PM		10 4 10 4	5
Size & diversity of the nine libed substrate (12.111) (aine, homogenous = 0.3 large; thiverse sizes = maximoints).			11065	
Byidence of channel uncision or widening (deeply incised = 0; stable bed to banks = max points)	0-15	海 斯0 和斯斯0	0 5	0
Presenceof major bank failures 13 (severe ansion = 0, molerosion estable banks = max points)	10 5 E	10 5 60 60 60 60 60 60 60 60 60 60 60 60 60	0 35	0
Rootidepthanilidensity on banks (no visible roots = 0: dense roots throughout = max points)	0.394		F10315	\
Impact by agriculture, livestock oratimber production (substantial impact = 0: no evidence = max points)	0.5 0.5	7510 - 24 <u>. 255</u> .	0-5	2
Presence of riffle pool ripple pool complexes 71 (no riffles/ripples or pools 0 well-developed = max points).	STORY WE	Company O The State of the	10 -6	1
Habitat complexity (little or no habitat = 0; sfrequent, waried habitats = max points)		0-16	it-310 – 36 - 1	.)
**Canopycoverage over streambed (no shading we getation = 0; continuous canopy = max points)	10 -5 ° 5	10 = 51 = 12 12 12 12 12 12 12 1	0 2 5	2
Substrate embeddedness (deeply embedded = 0; loose structure = max)	**************************************	a (0)—24 garaya	i0.—4 [±]	
Presence of stream invertebrates (see page 4) 20 (no evidence = 0 common numerous types = max points)	0-4	0 - 5 - 4	0-5	١
Presence of amphibians (no evidence = 0; common, numerous types = max points)	1 10.—4 - 4 (1)	0.4	10 - 4 · · · ·	1
Presence of fish (no evidence = 0, common numerous types = max points)	204	$0 = 4 - \frac{1}{2}$	04	1
Evidence of wildlife use (no evidence = 0; abundant evidence = max points)	0-6	0-5	0-5	0
Total Points Possible	100	100	100	
TOTAL SCORE (also enter on fi	irst page)	Photograph 1977		

^{*} These characteristics are not assessed in coastal streams.

USACE AID#	DWQ #	Site #	(indicate on attached map

3763

STREAM QUALITY ASSESSMENT WORKSHEET

Provide the following information for the stream reach und	er assessment:			
1. Applicant's name:	2. Evaluator's name:			
3. Date of evaluation: 3/17/04	4. Time of evaluation: 1:30			
5. Name of stream: Starkys Clee by	6. River basin: White Oak			
7. Approximate drainage area: 5 + 2 3 7	8. Stream order:			
9. Length of reach evaluated:	10. County: ひ へ			
11. Site coordinates (if known):	12. Subdivision name (if any):			
13. Location of reach under evaluation (note nearby roads and l	andmarks and attach map identifying stream(s) location):			
14. Proposed channel work (if any):				
15. Recent weather conditions: Recent weather conditions:	Q4 hrs			
16. Site conditions at time of visit:	·			
17. Identify any special waterway classifications known:	Section 10Tidal WatersEssential Fisheries Habitat			
Trout WatersOutstanding Resource Waters	Nutrient Sensitive WatersWater Supply Watershed(I-IV)			
18. Is there a pond or lake located upstream of the evaluation po	oint? YES NO If yes, estimate the water surface area:			
19. Does channel appear on USGS quad map? YES NO	20. Does channel appear on USDA Soil Survey YES NO			
	% Commercial% Industrial% Agricultural			
100 % Forested	% Cleared / Logged% Other ()			
22. Bankfull width:	23. Bank height (from bed to top of bank):			
	Gentle (2 to 4%)Moderate (4 to 10%)Steep (>10%)			
25. Channel sinuosity:Occasional bendsOccasional bends	Frequent meanderVery sinuousBraided channel			
Instructions for completion of worksheet (located on page 2): Begin by determining the most appropriate ecoregion based on location, terrain, vegetation, stream classification, etc. Every characteristic must be scored using the same ecoregion. Assign points to each characteristic within the range shown for the ecoregion. Page 3 provides a brief description of how to review the characteristics identified in the worksheet. Scores should reflect an overall assessment of the stream reach under evaluation. If a characteristic cannot be evaluated due to site or weather conditions, enter 0 in the scoring box and provide an explanation in the comment section. Where there are obvious changes in the character of a stream under review (e.g., the stream flows from a pasture into a forest), the stream may be divided into smaller reaches that display more continuity, and a separate form used to evaluate each reach. The total score assigned to a stream reach must range between 0 and 100, with a score of 100 representing a stream of the highest quality.				
Total Score (from reverse): 64 Commen	ts:			
	Date 3 17 0 6 8 a guide to assist landowners and environmental professionals in Corps of Engineers to make a preliminary assessment of stream			

quality. The total score resulting from the completion of this form is subject to USACE approval and does not imply a particular mitigation ratio or requirement. Form subject to change – version 06/03. To Comment, please call 919-876-8441 x 26.

CECARACTERISTICS	Trecordate	MORTPOLOTI Pedavani	A Principal Control of the Control o	SCORN
i Pesance ii ilov i posicie iil pads in serepris	(9) - 3			LX.
" i gas illow to samerailein — 0, signing illow — imax periods). Etwistering of passi human afficeration.	91. 75	(i) (i) - 3)	a) 5)	(
6. (c. 1665) é a l'eranda - 0, acéalt eardine max politics) Ripareid 2018	Ø			
i no banker 0 econolimone, vide banker may possie). I banker a manual ar demonstrative progress	40 5 .	(i) ii	21 Zi	34
(exposive distrates : 0, ge disebange : mas points) En and polar disebange	0 3		() 4)	2
3 (1) (1) (1) (2) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	(1) (2)		(i) スポース (i)	2
(C) " (no Pondigan -) cales by Condidating massignants) Enterpretational Anadylan newses	0) - 5;			
(despiyance trais in frequent Tourns transportus)		(r) - c		5
(1) (no verlands - 2) through suffacing wellst described as a problem of the control of the cont	9) 3		3)	
(g. Alexandrophia - Carrier on de region de manifer de consideration de la considerati			4	
(securist se pape conour de Highe on no Sasthacent (iges prop. g) and is the sate of political and built substitute			0 1	
The finance cast class, these discussions within the finance of themself tension on withining	3) 3		1.00 T	7
Joan the sed - 0, sixtre bed & hears - tess politics. For some our tenfor hards multius.	9 - 3		3	3
(aposte afeston = 0, no proteion stable books = max notice p Example of the first	- 10 . 3h		5	4
(in additions = 0 dense intermetable of production = 100 production 1	D= 55			4
(substitute tripasi de de svicindo de paragrafias). É relevas concillo (para) filológico loga election.	D = 3		Control of	
i procedescipe a sorrodis 2, wed cisverped may gorizus). Indica completely	(b) - (6).	(i)+ 65	i) (i	7
(thirds on no habitet - 0t ffeetheid, varied habitats - max pickats). Carboly anyeonge over streambad.	1.28 (16 to	7
(ma) specific Vese entitions. Ut continuous sembory = mass points) Substitute reminentaciónsis	143		19) A 7	5
(discolly anthacided = 0; (close structures imports) Prostrice of structure of structure (for the prints of the p		10 (1)	$0 + \frac{1}{2} \log \frac{1}{2}$	2
(no svidence – Opsanicam, numbrons typus – max primed A Vill	- 1. 9 - 1.21		0 3	2
Trassumae of fish	$\widehat{\boldsymbol{b}} = A^{-1}$		$(0) = \sqrt{2} e^{-i\pi t}$	3
23 ((no exidence to), common municipalist types (annaxipoints) (1996)	0-6	0-15 0-15	85 16 25 80 5 5	5
I(nio cyltience = 0 ; abundantsevidence = anax points) Tiotal Points Possible	000	1700	100	1,4
TOTAL SCORE (also enter on the	la de la companya de La companya de la co			
* These characteristics are not assessed in coastal streams	e de la companya de		Place October 1	

^{*} These characteristics are not assessed in coastal streams.

•			
USACE AID#	DWO #	Site #	(indicate on attached map
OSACE AIDII	D # \ / "	5.00	(maissais on attached map

Provide the following information for the stream reach und	er assessment:
1. Applicant's name: UC DOT	2. Evaluator's name:
3. Date of evaluation: 3\17\04	4. Time of evaluation: 11:50
5. Name of stream: Ut to Starters	6. River basin: White Care
7. Approximate drainage area: 5	8. Stream order:
9. Length of reach evaluated: ~ 100 f	10. County: On Slow
11. Site coordinates (if known):	12. Subdivision name (if any):
<u>US17</u>	andmarks and attach map identifying stream(s) location):
14. Proposed channel work (if any):	
	in 39his
16. Site conditions at time of visit:	· · · · · · · · · · · · · · · · · · ·
17. Identify any special waterway classifications known:	Section 10Tidal WatersEssential Fisheries Habitat
Trout WatersOutstanding Resource Waters	Nutrient Sensitive WatersWater Supply Watershed(I-IV)
18. Is there a pond or lake located upstream of the evaluation po	int? YES NO If yes, estimate the water surface area:
19. Does channel appear on USGS quad map? YES NO	20. Does channel appear on USDA Soil Survey? YES NO
21. Estimated watershed land use: % Residential	% Commercial% Industrial% Agricultural
	% Cleared / Logged% Other ()
22. Bankfull width:	23. Bank height (from bed to top of bank):
24. Channel slope down center of stream:Flat (0 to 2%) _	Gentle (2 to 4%)Moderate (4 to 10%)Steep (>10%)
25. Channel sinuosity:StraightOccasional bends _	Frequent meanderVery sinuousBraided channel
location, terrain, vegetation, stream classification, etc. Every cheach characteristic within the range shown for the ecoregion. Pidentified in the worksheet. Scores should reflect an overall asso be evaluated due to site or weather conditions, enter 0 in the sc there are obvious changes in the character of a stream under revi	2): Begin by determining the most appropriate ecoregion based on aracteristic must be scored using the same ecoregion. Assign points to age 3 provides a brief description of how to review the characteristics essment of the stream reach under evaluation. If a characteristic cannot oring box and provide an explanation in the comment section. Where ew (e.g., the stream flows from a pasture into a forest), the stream may a separate form used to evaluate each reach. The total score assigned 100 representing a stream of the highest quality.
Total Score (from reverse): 42 Comment	s:
gathering the data required by the United States Army C	Date 3 17 0 6 a guide to assist landowners and environmental professionals in corps of Engineers to make a preliminary assessment of stream this form is subject to USACE approval and does not imply a

particular mitigation ratio or requirement. Form subject to change – version 06/03. To Comment, please call 919-876-8441 x 26.

CHARACTERSSINGS	FCCOMMINE	ijoer Poesii Pietmoii	RANGIES Standario	SCORE
Trastoros di Univi paratida il pioda in dingina qua Nova a sabredila = 0 prope Nove mes piones)	(P) Si	0 4)) = 5/1	3
Francisco de pasa handral alternation (o cansos alternation de mondiblisharione consequinais)	(9). (6)	05))	0
Popurtun zoffe. I des boillen – et consençados, vide ballika – imax parists)	0 6	00 35	27	3
Evidence administración de describilista arigas (esperave d'orbanear D. de absolutives - máx político	9 5	ijζ.,		2
ing mad by near discretings In the machines of springs seems, seems, seems of the springs of	0 3.	0.4		3
Trase nas el adipos di Aboltalian Company de la calencative dipodellain de la pagada	0 - 4			2
The composition of the Application of the Composition of the Compositi	0, 35	D. i.	0 - 2, 3	2
Province of adhaming the finds The second of these adhams twistered in a province.	0;= (6)	0.5		3
Channell Thurbody Colors of the only to the Talender Trace of the t				\
Terrogent ryper Literatur den ericht auf lingle in die seuffellen eine anderseune			4)	5
Size A state of a definition of the substitute o			0) - 5	
L'adence pi Chermal fucision ve galering de god two sade de galdne bac's homes - proceptible)	0 3			2
Anexerise al major beet univers (se ese se con- o se medicin. Stable backs' conventions) Robert guilland steasony on familia	0 - 5	Ü+ 5	3	5
22 1.4 The stabilistics - 0, de the tous since should with price 1.2 The stabilistics - 0, de the tous since should with price 1.2 The part by senting these lives logs, or finitely print senting	0.5) - Š. 11 (3
a - 2 p. s. grades of section that it estables or conjugat produced in (sufficient introduct 0, no \$ videolos = index politics) (a sufficient conjugate production of the section of th	0 = 3	0(-4)	9 - 1 - 3	2
ns milesingers argonals of weathers pour an upress The block arms of the single of the second of th	0 3 1	0) 6 3	0
1. 2013 Surper Tuy 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	9 - 6	0-6		· ·
1.3 And Shading Volume Organization (Companions campos) — imax podess) — Substantic camballate highs	0, 23	():- 5 / 1 	0 5 10	2
(depoly on be dead = 00 House senieting = max). Programs of size in to varieting (see page 2))		0)- 4		
(no evidence = describer in numerous gypts = max podines) Presence of amphibries	5 0 = 4 		9) = 3 13 44	
(m.c. syndence — 02 common, introspenis lypes — max potatis) Trespines an illih	(i) = -4)	0.4		1
(no revidence 0), common numerous types = mak points) : Pyridence of will of the use	0 - 45	(0)== 21 100		,
(no evidence 0) abundant evidence smax points)	10 - 16		±40−5 	
Aliotal Roints Rossible	1100	#1000 to \$24 kg	31 00	
* These characteristics are not assessed in coastal streams	rstpage) :	Carlo A person	40 mg (* 1967)	42

^{*} These characteristics are not assessed in coastal streams.

USACE AID#	DWQ #	Site #	(indicate on attached map
------------	-------	--------	---------------------------

Provide the following information for the stream reach und	der assessment:
1. Applicant's name: NCOST	2. Evaluator's name:
3. Date of evaluation: 3117/64	4. Time of evaluation: 17 15
5. Name of stream: UT to Stubie Charles	6. River basin: Whee Och
7. Approximate drainage area: Site 53	8. Stream order:\
9. Length of reach evaluated: 100 ++	10. County: SASISCO
11. Site coordinates (if known):	12. Subdivision name (if any):
13. Location of reach under evaluation (note nearby roads and	landmarks and attach map identifying stream(s) location):
14. Proposed channel work (if any): 3ase Tail	Onc -
15. Recent weather conditions: Recent weather conditions:	24 his
16. Site conditions at time of visit:	
17. Identify any special waterway classifications known:	Section 10Tidal WatersEssential Fisheries Habitat
Trout WatersOutstanding Resource Waters	Nutrient Sensitive WatersWater Supply Watershed(I-IV)
18. Is there a pond or lake located upstream of the evaluation p	point? YES NO If yes, estimate the water surface area:
19. Does channel appear on USGS quad map? YES	20. Does channel appear on USDA Soil Survey? YES NO
21. Estimated watershed land use:% Residential	% Commercial% Industrial% Agricultural
% Forested	% Cleared / Logged% Other (
22. Bankfull width: 6 C+	23. Bank height (from bed to top of bank):
24. Channel slope down center of stream:Flat (0 to 2%)	Gentle (2 to 4%)Moderate (4 to 10%)Steep (>10%)
25. Channel sinuosity:StraightOccasional bends	Frequent meanderVery sinuousBraided channel
location, terrain, vegetation, stream classification, etc. Every ceach characteristic within the range shown for the ecoregion. identified in the worksheet. Scores should reflect an overall as be evaluated due to site or weather conditions, enter 0 in the sthere are obvious changes in the character of a stream under rebe divided into smaller reaches that display more continuity, at to a stream reach must range between 0 and 100, with a score of	
Total Score (from reverse): 29 Commer	nts: Intermettant
Evaluator's Signature MM (M)	Date 3/17/17/
This channel evaluation form is intended to be used only	Date 3/17/cr/ as a guide to assist landowners and environmental professionals in Corps of Engineers to make a preliminary assessment of stream

quality. The total score resulting from the completion of this form is subject to USACE approval and does not imply a particular mitigation ratio or requirement. Form subject to change – version 06/03. To Comment, please call 919-876-8441 x 26.

CHARACTERISTIES.	TONETO	IION POINTE Deimon	
l Pagenes of New Adams in Seeing. I cap flow or somewhen the Seeing filt verifies bounts).	9, 5		0 5 0
Pointing of past different afformation. 1. (* 1808 of a besiden afformation of the points) 1. (* 1808 of a besiden afformation of the points) 2. (* 1808 of a besiden afformation and points)	9)	Q = 35	0 1
ta jandur ilganeti ens, ydde ballya – may bordsir Ilganet ar instruction de allemaethelise miges	0. 6 3. 3	(1) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	多
(expensive destinates - 0 de déchanges (mexigodair)) (expensive de déchange) (expensive de déchange) (expenses segles, expéries, els françaises)	j 2	934	
Presence of apprecial landidation Confibration of the expectation of the experiments The remarkant of the experiments	0.4		
(dest) sementand de frequesi (langling mexicoles) Constitue de inflation (xechinds (no xechinds de latific adfancia xechinds describes)	9 3 j	9-4 g-4	
(Chromol Thanking) (Extract to the medical process of the control	9) 5)		
Conformed them is develor sive depositions or little in his safitaneous massessimon develor development in all divides built and other	y v		The state of the s
om e frances conser o fortse, frantse 1996 e 1995 e 1995 e 1996 e E frances di Ubraziel Ingsain de Mostros	A		5 2
(depoly inched to stable bad & banks to reagon (14)) Forestrive of realizablic broth indictors (access freston to be no oresion stable backs interpolation)	3 3	0-3	3 5
Roud fividit and Housey in Amelia (To yighta now a Codense (Listingue nome may provide) (To prod by manual rows, lows took by Carlier production			2
18 (subtraction impact 0 mod vidence find x points) Promise of trible pool/tipalls ipped to inplicate (no stidle supple supposts filt wall-developed final societies)	2-3.		5
Haibitai tample sity (Bijjste or no indentale 10: Requesti, varsed indultars—max parinte)	9 (6)	0 - 5	\
(Cantripy dayerige of seminided (3) (And Sheather we require (Cantripy dayerige of seminided (And Sheather we require (Cantrip (C	AV3 9 - 2 ₁	0.5	2
(figsply and beddled = 00 (poise structure = 1723) Progerice of structure in 10 an elements (see page 4) (so evidence = 00 continuous duraterous (ypoye marcipotius)	152 3 9-5,4	io 5	0-3 2
Presence at implations of the continue of the	(i) — [4].		0.4 2
222 (a) Evidence = 0 toommon mumerous types = anax points). (b) Historian on the many points and the many points are many points and the many points and the many points and the many points are many points and the many points and the many points are many points and the many points and the many points are many points and the many points and the many points are many points are many points and the many	(i) 4· (0) 6	(0) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	
s(no evidence = 0; rabundant evidence = max points) Tiotal Roints Possible	100	1 30 5	1100
TOTAL SCORE (also enter on fin	sipage) +		

^{*} These characteristics are not assessed in coastal streams.

USACE AID# DW	'Q # Site	# (indicate on attached map
---------------	-----------	-----------------------------

5°4

STREAM QUALITY ASSESSMENT WORKSHEET

Provide the following information for the stream reach und	der assessment:
1. Applicant's name: <u>ルC D で T</u>	2. Evaluator's name:
3. Date of evaluation: $3/7/64$	(0.173)
5. Name of stream: ITto NE Creek	6. River basin: 8. Stream order:
7. Approximate drainage area: Site 2	8. Stream order:
9. Length of reach evaluated: \oo -	10. County: Onslow
11. Site coordinates (if known):	12. Subdivision name (if any):
13. Location of reach under evaluation (note nearby roads and	landmarks and attach map identifying stream(s) location): US 17
14. Proposed channel work (if any):	
15. Recent weather conditions: Ran win	24 hrs
16. Site conditions at time of visit:	
17. Identify any special waterway classifications known:	Section 10Tidal WatersEssential Fisheries Habitat
Trout WatersOutstanding Resource Waters	Nutrient Sensitive WatersWater Supply Watershed(I-IV)
18. Is there a pond or lake located upstream of the evaluation p	oint? YES NO If yes, estimate the water surface area:
19. Does channel appear on USGS quad map? YES NO	20. Does channel appear on USDA Soil Survey? YES
21. Estimated watershed land use: Residential	10% Commercial% Industrial% Agricultural
	55% Cleared / Logged% Other ()
	23. Bank height (from bed to top of bank): 4F4
24. Channel slope down center of stream:Flat (0 to 2%)	Gentle (2 to 4%)Moderate (4 to 10%)Steep (>10%)
25. Channel sinuosity:StraightOccasional bends	Frequent meanderVery sinuousBraided channel
location, terrain, vegetation, stream classification, etc. Every ceach characteristic within the range shown for the ecoregion. identified in the worksheet. Scores should reflect an overall as be evaluated due to site or weather conditions, enter 0 in the sthere are obvious changes in the character of a stream under results.	
Evaluator's Signature / Life Company of the Company of the United States Army	Date 3 1 1 7 64 as a guide to assist landowners and environmental professionals in Corps of Engineers to make a preliminary assessment of stream

quality. The total score resulting from the completion of this form is subject to USACE approval and does not imply a particular mitigation ratio or requirement. Form subject to change – version 06/03. To Comment, please call 919-876-8441 x 26.

10	# CHADACTEDISTICS		ECOREGION POINT RANGE			CODE
(1) (1) (1)	#1	CHARACTERISTICS	Coastal	Piedmont	Mountain	SCORE
	60 1	Presence of flow / persistent pools in stream (no flow or saturation = 0; strong flow = max points)	0-5	0-4	0-5	4
(1) (1) (1)	2	Evidence of past human alteration (extensive alteration = 0; no alteration = max points)	0-6	0-5	0-5	\bigcirc
	3	Riparian zone (no buffer = 0; contiguous, wide buffer = max points)	0-6	0-4	0-5	2
	4	Evidence of nutrient or chemical discharges (extensive discharges = 0; no discharges = max points)	0-5	0-4	0-4	4
AL	5	Groundwater discharge (no discharge = 0; springs, seeps, wetlands, etc. = max points)	0-3	0-4	0-4	0
PHYSICAL	6	Presence of adjacent floodplain (no floodplain = 0; extensive floodplain = max points)	0-4	0-4	0-2	O
PH	7	Entrenchment / floodplain access (deeply entrenched = 0; frequent flooding = max points)	0 – 5	0-4	0-2	L
	8	Presence of adjacent wetlands (no wetlands = 0; large adjacent wetlands = max points)	0-6	0-4	0-2	0
	9	Channel sinuosity (extensive channelization = 0; natural meander = max points)	0-5	0-4	0-3	1,-
	10	Sediment input (extensive deposition= 0; little or no sediment = max points)	0-5	0-4	0-4	4
	11	Size & diversity of channel bed substrate (fine, homogenous = 0; large, diverse sizes = max points)	NA*	0-4	0-5	0
<u> </u>	12	Evidence of channel incision or widening (deeply incised = 0; stable bed & banks = max points)	0-5	0-4	0-5	Ō
Ш	13	Presence of major bank failures (severe erosion = 0; no erosion, stable banks = max points)	0-5	0-5	0-5	3
STABILIT	14	Root depth and density on banks (no visible roots = 0; dense roots throughout = max points)	0-3	0-4	0-5	3
S	15	Impact by agriculture, livestock, or timber production (substantial impact =0; no evidence = max points)	0-5	0-4	0-5	4
	16	Presence of riffle-pool/ripple-pool complexes (no riffles/ripples or pools = 0; well-developed = max points)	0-3	0-5	0-6	3.
BITAT	17	Habitat complexity (little or no habitat = 0; frequent, varied habitats = max points)	0-6	0-6	0-6	2
HAB	18	Canopy coverage over streambed (no shading vegetation = 0; continuous canopy = max points)	0-5	0-5	0-5	2
age to the	19	Substrate embeddedness (deeply embedded = 0; loose structure = max)	NA*	0-4	0-4	A STATE OF THE STA
X	20	Presence of stream invertebrates (see page 4) (no evidence = 0; common, numerous types = max points)	0-4	0-5	0-5	1.
50	21	Presence of amphibians (no evidence = 0; common, numerous types = max points)	0-4	0-4	0-4	1
BIOLOGY	22	Presence of fish (no evidence = 0; common, numerous types = max points)	0-4	0-4	0-4	0
	23	Evidence of wildlife use (no evidence = 0; abundant evidence = max points)	0-6	0-5	0-5	
11177	CERTIFICATION	Total Points Possible	100	100	100	partenanting-reduced
1 (1975) 1 (1975)	eriorienia Liabilitati	TOTAL SCORE (also enter on fi	rst page)	Paranghas Pelusa Paranghas Pelusa	SEPTIMES PREPARED	35

^{*} These characteristics are not assessed in coastal streams.

			•••

USACE AID#	DWQ #	Site #	(indicate on attached map

Provide the following information for the stream reach un	nder assessment:
1. Applicant's name: UCD OT	2. Evaluator's name:
3. Date of evaluation: 311 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	4. Time of evaluation: 10 40
5. Name of stream: UT +0 NE Creet	6. River basin: New River
7. Approximate drainage area: Sitc YA	8. Stream order:
9. Length of reach evaluated:	10. County:
11. Site coordinates (if known):	12. Subdivision name (if any):
13. Location of reach under evaluation (note nearby roads and	d landmarks and attach map identifying stream(s) location):
14. Proposed channel work (if any): Colver +	
15. Recent weather conditions: \(\sum_{\alpha} \cdot \alpha^{1/\delta} \cdot \omega^{1/\delta} \)	in 24 his
16. Site conditions at time of visit:	
17. Identify any special waterway classifications known:	Section 10Tidal WatersEssential Fisheries Habitat
Trout WatersOutstanding Resource Waters	Nutrient Sensitive WatersWater Supply Watershed(I-IV)
18. Is there a pond or lake located upstream of the evaluation	point? YES NO If yes, estimate the water surface area:
19. Does channel appear on USGS quad map? YES	20. Does channel appear on USDA Soil Survey? YES NO
21. Estimated watershed land use: Residential	% Commercial% Industrial% Agricultural
<u>S</u> 5% Forested	% Cleared / Logged% Other (
22. Bankfull width: Non Colsecues	23. Bank height (from bed to top of bank): 5 - 7 f
24. Channel slope down center of stream: Flat (0 to 2%)	Gentle (2 to 4%)Moderate (4 to 10%)Steep (>10%)
25. Channel sinuosity:StraightOccasional bends	Frequent meanderVery sinuousBraided channel
location, terrain, vegetation, stream classification, etc. Every each characteristic within the range shown for the ecoregion identified in the worksheet. Scores should reflect an overall a be evaluated due to site or weather conditions, enter 0 in the there are obvious changes in the character of a stream under r be divided into smaller reaches that display more continuity, to a stream reach must range between 0 and 100, with a score	
Total Score (from reverse): 33 Comm	ents: Int
gathering the data required by the United States Army	Date
quality. The total score resulting from the completion	of this form is subject to USACE approval and does not imply a

particular mitigation ratio or requirement. Form subject to change – version 06/03. To Comment, please call 919-876-8441 x 26.

	GHARACTERISTIC	S 125	FCOREG	TONIPOINT Biedmont	RANGE Mountain	SCORE
	ence of flow//persistent/poo / or saturation = 0: strong flow		±30=5.1	10_4	100=15	4
	Exidence of past human altevation = 0, no alteration		0-67	- 10 <u>-2</u> 5	14025)
	Riparian/zone er =0, contiguous widelbuffe		1. 10 - 6 m = 1	10-1	100-51	0
THE PROPERTY OF THE PROPERTY O	ence of nutrient or chemica e discharges = 0, no discharg Groundwater discharg	es = max points)	0-5	201=1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0-4	4
(ino discharg	Teroinitwateransenan e Ousprings seeps, wetlands Presence of adjacent flood	sk etc: = max points)	1023 <i>H</i>	10 20 20 30 30 30 30 30 30 30 30 30 30 30 30 30		2
	iplain = 10 sextensive floodplain Entrenchment//floodplain	in = (max points)* ***********************************	4.0-4	to zastroda Post romania india	10=2	0
Company of the control of the contro	ntrenched = 0; frequent floodi Rresence of adjacent wetl	ng—max points)	0-5-4 1 ₀₋₆ -4	0 4 6	± 10 = 2 ± 10 = 2	32
A COLOR ME ME	nds 0 large adjacemwetlan Charmel sinuosity		0 = 5			0
(extensived)	iamelization - 0 matrial me Seriment input	and the second second			10 4.	1
LUCATION STATE	leposiment 0: Tritle orangsedi e <mark>& divensity oft</mark> channelthed ogenous = 0: Jarge divense si	estilostrane e di Sang 👢	EXTVAL SE	0,2,2	0.25	Z
CONTRACTOR OF TEXT	tence of channel incision or noised = 0 stable bed& bank	widening###################################	1 (0-15)	14 10 14H 1	50-50	2
2 /138 (Severetero	(Presignacióftmajjoribank fa) sión=10; moenosión, siáble ba	ilimes nks:=imax=points)	0.45	0.45	170E5	身?
(iio)visible	Rootidepthrandidensity on roots = 0; dense roots through	iout=max points)	0=3	1 10 21 15	0=5	1
areduce) 📭 🗸 🗜 🔭	agniculture, livestock orth intial impact =0; no evidence ince of a file-pool/ripple-poo	=max points) 🧀 💯	F-10-55, A	F-10-4503	0,25	+
	pples or pools =0; well-devel Habitat complexity			0.55	20-6 3-2-6	(
A STATE OF THE PROPERTY OF THE	abitat = 0; frequent, varied ha Canopy coverage over strea		g, 40,36 eg;a	10-16	6	
(noishading	vegetation = 0, continuous ca Substrate embeddedne	nopy = max/points) ss	0-5 NA*	1025. ************************************	10-5 10-4	0
(deep	oly embedded =0, loose struc nce of stream invertebrates	(see page 4)	0 - 4	10 - 5	**************************************	<u>t</u>
5 31 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ce = 10, common numerous ty Presence of amphibian	s in the Figure	0-4	7 10 -4	10 – 4	2
	ce = 0; common, numerous ty Presence of fish ce = 0; common, numerous ty		10-4	0-4	0 - 4	1
72 计数据 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图	Evidence of wildlife us lence = 0; abundant evidence	e de la companya de l	0-6	0-5		0
	Total Points Possible		100	100	100	
	TOTAL SCORI	E (also enter on fir	st page)			33

^{*} These characteristics are not assessed in coastal streams.

ÚSACE AID#	DWQ #	Site #	(indicate on attached map

10 trolode of post of god

STREAM QUALITY ASSESSMENT WORKSHEET

Provide the following information for the stream reach under	
1. Applicant's name: UCDOT	2. Evaluator's name: 3M
3. Date of evaluation: 317 04	4. Time of evaluation:
5. Name of stream: UT TO NE Creet	6. River basin: New River
7. Approximate drainage area: Site \O	8. Stream order:
9. Length of reach evaluated: 100 Fr	10. County: () Shu
11. Site coordinates (if known):	12. Subdivision name (if any):
13. Location of reach under evaluation (note nearby roads and la	andmarks and attach map identifying stream(s) location):
14. Proposed channel work (if any):	
	t Was
16. Site conditions at time of visit:	
	Section 10Tidal WatersEssential Fisheries Habitat
Trout WatersOutstanding Resource Waters	Nutrient Sensitive WatersWater Supply Watershed(I-IV)
18. Is there a pond or lake located upstream of the evaluation po	int? YES No If yes, estimate the water surface area:
19. Does channel appear on USGS quad map? YES NO	20. Does channel appear on USDA Soil Survey? YES NO
	% Commercial% Industrial% Agricultural
<u>[OO</u> % Forested	% Cleared / Logged% Other ()
22. Bankfull width:	23. Bank height (from bed to top of bank):
24. Channel slope down center of stream:Flat (0 to 2%) _	Gentle (2 to 4%)Moderate (4 to 10%)Steep (>10%)
25. Channel sinuosity:StraightOccasional bends _	Frequent meanderVery sinuousBraided channel
location, terrain, vegetation, stream classification, etc. Every che each characteristic within the range shown for the ecoregion. Pidentified in the worksheet. Scores should reflect an overall asset be evaluated due to site or weather conditions, enter 0 in the sc there are obvious changes in the character of a stream under revibe divided into smaller reaches that display more continuity, and to a stream reach must range between 0 and 100, with a score of	2): Begin by determining the most appropriate ecoregion based on aracteristic must be scored using the same ecoregion. Assign points to tage 3 provides a brief description of how to review the characteristics essment of the stream reach under evaluation. If a characteristic cannot oring box and provide an explanation in the comment section. Where new (e.g., the stream flows from a pasture into a forest), the stream may a separate form used to evaluate each reach. The total score assigned 100 representing a stream of the highest quality.
	Date 3 17 14 s a guide to assist landowners and environmental professionals in Corps of Engineers to make a preliminary assessment of stream

quality. The total score resulting from the completion of this form is subject to USACE approval and does not imply a particular mitigation ratio or requirement. Form subject to change – version 06/03. To Comment, please call 919-876-8441 x 26.

# CHARAGHERISHES	ECOREC	TON POINTS	ANGE ANGE	SCORE
Presence of flow / persistent pools in stream e 1 2 (not flow or saturation = 0, strong flow = max points)	1.0=5:	20-44	0.25	5
2 Exidence of pasishuman alteration (extensive alteration—0; no alteration—max points)	10 6	0.75	10215	0
Ripariau zone 3 (no builler 0 tsontiguous wide builler maxipoints)	i0-6-12	2.2.40-44	0.55	4
#Evidence of nutriention chemical discharges	0-15		0 -41 see	0
Groundwater discharge (no discharge 0) sprungs, seeps, wetlands, etc max points) Presence of adjacent floodplain	#10 E3 ;#1	(4) (20 - 24) (3) (3)	4 00 ± 24 ± 15 ± 15 ± 15 ± 15 ± 15 ± 15 ± 15 ± 1	<i>j.</i>
6 *** (monthoodplain = 0.sextensive floodplain = max points) *** ********************************		0.20	0 = 2 (5) 1	<u></u>
Bresence of a diagram wetlands	2-102-35 (SE)	Herica O 124 Miller International American Hospital Research	*.0 <u>=2</u>	0
8 (no wellands 770; llarge adjacent wetlands = max points); (limit of the state of	0-16 (0)		40—23,3) 34 - 34 - 44 - 44 - 44 - 44 - 44 - 44 -	
a (extensive charme lization = 10; matural meander = maxspoints) : ###Sed intent input	0 = 5	0 - 4	4043 6465 60024	0
Size & diversity and harmed had substraited		0 4	0.45	5
(Cine, chomogenous = O. Varige, diverse sizes = max opinits)). Evidence of chamnel incistor or widening = 3.	0=5		025 T	
Resence (it major bank failures : 113 (severe erosion = 0) noverosion stable banks = max points)	$0 = \frac{1}{5} \left(\frac{1}{5} \right)$	10 (10 mg)	608 5	(7
Root/depth/amtidensity on banks (no visible roots = 0. dense roots throughout = max points)	74 70 <u>- 3</u> 3 74 7	0 24:	0=5	1
Impact by agriculture, livestock or timber production (15) (substantial impact = 0; no evidence = max points)	-20=2	20-4	-0-5 -0-5	2
Presence of mille-pod/mpple-poolscomplexes (no milles/mpples or pools = 0; well-developed = max points)	10=3740	5 20 25	40-6	2/
#117 #1	- 10-46 41.4	170-1603 17	40 -6	
Canopy coverage over streambed (no shading vegetation = 0; continuous canopy = max points)	40-5	302523	02-5	2
Substrate embeddedness (deeply embedded = 0, loose structure = max) Presence of stream invertebrates (see page 4)	NA*	(024 ph.)	0-4	
(no evidence 0) common numerous types = max points)	0-4	10-5	10-5	1
(no evidence = 0 common numerous types = max no ints)	-7-10-4	20 - 21 - 14 - 15 - 15 - 15 - 15 - 15 - 15 - 1	₹0°—4°1	1
(no evidence = 0; common numerous types = max points) Evidence of wildlife use	0 6	170 4 2 3 3 4 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0-4 0-5	
(no evidence = 0; abundant evidence = max points) Total Points Possible	100	100	100	
	TANK TO SERVICE OF THE SERVICE OF TH	TWO.		ganage in a
* These characteristics are not assessed in coastal streams.	P-69)	dipolitical services and subjection		

^{*} These characteristics are not assessed in coastal streams.

•			
USACE AID#	DWQ #	Site #	(indicate on attached map

37:

STREAM QUALITY ASSESSMENT WORKSHEET

Provide the following information for the stream reach und	ler assessment:
1. Applicant's name:	2. Evaluator's name:
3. Date of evaluation: 3/17/04	4. Time of evaluation:
5. Name of stream: Stakys Cleek	6. River basin: 1116. 4 e Coa 4
7. Approximate drainage area: 57	8. Stream order:
9. Length of reach evaluated: 100 f	10. County: 0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
11. Site coordinates (if known):	12. Subdivision name (if any):
US IT	landmarks and attach map identifying stream(s) location):
14. Proposed channel work (if any):	**-
15. Recent weather conditions:	24 his
16. Site conditions at time of visit:	
17. Identify any special waterway classifications known:	Section 10Tidal WatersEssential Fisheries Habitat
Trout WatersOutstanding Resource Waters	Nutrient Sensitive WatersWater Supply Watershed(I-IV)
18. Is there a pond or lake located upstream of the evaluation p	oint? YES NO If yes, estimate the water surface area:
19. Does channel appear on USGS quad map? YES NO	20. Does channel appear on USDA Soil Survey YES NO
21. Estimated watershed land use:% Residential	% Commercial% Industrial% Agricultural
100 % Forested	% Cleared / Logged% Other (
22. Bankfull width: Non On 1969	23. Bank height (from bed to top of bank):
	Gentle (2 to 4%)Moderate (4 to 10%)Steep (>10%)
25. Channel sinuosity:StraightOccasional bends	Frequent meanderVery sinuousBraided channel
location, terrain, vegetation, stream classification, etc. Every cleach characteristic within the range shown for the ecoregion. Identified in the worksheet. Scores should reflect an overall assibe evaluated due to site or weather conditions, enter 0 in the sthere are obvious changes in the character of a stream under rev	e 2): Begin by determining the most appropriate ecoregion based on haracteristic must be scored using the same ecoregion. Assign points to Page 3 provides a brief description of how to review the characteristics sessment of the stream reach under evaluation. If a characteristic cannot coring box and provide an explanation in the comment section. Where view (e.g., the stream flows from a pasture into a forest), the stream may and a separate form used to evaluate each reach. The total score assigned f 100 representing a stream of the highest quality.
Total Score (from reverse): 64 Commen	nts:
	Date ? \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	Corps of Engineers to make a preliminary assessment of stream f this form is subject to USACE approval and does not imply a

particular mitigation ratio or requirement. Form subject to change – version 06/03. To Comment, please call 919-876-8441 x 26.

TO THE RESIDENCE OF THE PARTY O	ION POINT RANGE SCORE
Presence of flow/persistent pools in stream 1 2 (no flower saturation = 0) strong flow = max points)	10 4 7 1 10 5 W
2. Exidence of past human alteration 10:465 12:4 (extensive alteration = 0: no alteration = max points)	10.25. 10.25
Ripariauzone 0.46	(-10-21
44 ** ** ** ** ** ** ** ** ** ** ** ** *	34
Groundwater/discharge (ino discharge=10, springs, seeps, wetlands reic = max points) (ino discharge=10, springs, seeps, wetlands reic = max points)	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
C C Choiffead plain (Deextensive flood plain max points)	20.4 2
**************************************	60 44. 4 Fro 22
Presence of adjacent wetlands (no wetlands 0, large adjacent wetlands max points)	13(0- 4)
Chamelsingosity (9) (10) (1	0-4773 390-39
Settimentalingut: ((extensive deposition=0) thittle or no sediment = max points)	* 10=4
(dine floring enous = 0. Harge, diverses sizes = maxpoints)	02.1
12 12 13 Hividence of channel incision or widening 12 0 5	10:44 12:0-54 3
Presence of major bank failures 40 5	0=5
Rootsdepthand density on hanks (in a visible roots = 0 idense noots throughout = max points)	0 4 5 5 4
4 Ampact by agriculture, livestock, or timber production (0-5)	0.43. 30.5 4
** ***********************************	10.25 10.6
Habitat complexity	0.46 1.40.46
Canopy coverage over streambed 18 40 18	10=5 4 10-5 7
(noishading vegetation = 0; continuous canopy = max points) Substrate embeddedness NA*	10-4 in 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(deeply-embedded = 0, loose structure = max) Presence of stream invertebrates (see page 4)	10-55
(notevidence = 0; common, numerous types = max points) Presence of amphibians 21 (notevidence = 0; common numerous types = max points)	20-4 2
Presence of fish	0-4 3
Evidence of wildlife use	0-5 0-5
(no evidence = 0; abundant evidence = max points) Total Points Possible 100	100 100 14
TOTAL SCORE (also enter on first page)	
* These characteristics are not assessed in coastal streams	AND THE STREET STREET STREET

^{*} These characteristics are not assessed in coastal streams.

USACE AID# Site # (indicate on attached map	•			
	USACE AID#	DWQ #	Site #	(indicate on attached map)

Provide the following information for the stream reach under as	ssessment:
1. Applicant's name: 1. 2.	Evaluator's name:
3. Date of evaluation: 3\17\04 4.	Time of evaluation: 11:50
5. Name of stream: Ut to Stevens 6.	River basin: White Oak
7. Approximate drainage area: 8.	Stream order:
9. Length of reach evaluated: ~ 100 f	. County: On Slow
11. Site coordinates (if known):12.	Subdivision name (if any):
13. Location of reach under evaluation (note nearby roads and landm	narks and attach map identifying stream(s) location):
14. Proposed channel work (if any): \(\tau_i \)	<u></u>
15. Recent weather conditions: Recent weather conditions:	24 his
16. Site conditions at time of visit:	
17. Identify any special waterway classifications known:Sec_	ction 10Tidal WatersEssential Fisheries Habitat
Trout WatersOutstanding Resource Waters Nutr	rient Sensitive WatersWater Supply Watershed(I-IV)
18. Is there a pond or lake located upstream of the evaluation point?	YES NO If yes, estimate the water surface area:
19. Does channel appear on USGS quad map? YES NO 20.	Does channel appear on USDA Soil Survey? YES NO
21. Estimated watershed land use: % Residential	% Commercial% Industrial% Agricultural
1.	% Cleared / Logged% Other ()
22. Bankfull width: () 6 1 () 10 1 (1) 23.	Bank height (from bed to top of bank): 45 (+
24. Channel slope down center of stream: Flat (0 to 2%) (
25. Channel sinuosity:StraightOccasional bendsF	Frequent meanderVery sinuousBraided channel
Instructions for completion of worksheet (located on page 2): location, terrain, vegetation, stream classification, etc. Every characteristic within the range shown for the ecoregion. Page identified in the worksheet. Scores should reflect an overall assessm be evaluated due to site or weather conditions, enter 0 in the scoring there are obvious changes in the character of a stream under review (be divided into smaller reaches that display more continuity, and a set to a stream reach must range between 0 and 100, with a score of 100	teristic must be scored using the same ecoregion. Assign points to 3 provides a brief description of how to review the characteristics ent of the stream reach under evaluation. If a characteristic cannot g box and provide an explanation in the comment section. Where (e.g., the stream flows from a pasture into a forest), the stream may eparate form used to evaluate each reach. The total score assigned representing a stream of the highest quality.
Total Score (from reverse): 42 Comments:	
Evaluator's Signature This channel evaluation form is intended to be used only as a g gathering the data required by the United States Army Corp.	

quality. The total score resulting from the completion of this form is subject to USACE approval and does not imply a particular mitigation ratio or requirement. Form subject to change – version 06/03. To Comment, please call 919-876-8441 x 26.

	GHARACTERIST	IICS Ta		ION POINTAR	ANGE Angle	SCORE
	ence of flow/rpersistent p v or saturation = 0 estrong		10 20 20 51 kg	20.4	160 <u>-</u> 5	3
11 (4) 15 (4)	Ewidence of past human iveralteration = 0 movaltera	alteration 📜 👍		20-55	10 13 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0
3 ino bili	Riparian zone er = 10, contiguous widebi	iffer=:max points)	0-6.	2.10 -4	0-5	3
	lence of nutrient or chem e discharges=0 mo disch		1, 0-5	X0 <u>-2</u>	$40\frac{100}{400}$	2
(no discharge	Groundwater disch e 0, springs, seeps, wetla		1 - 20 - 3 / 1	1,50-4	10 <u>- 7</u> 4 : (c.)	3
E 6 (motflood	Presence of adjacent flood		第二十五十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二	10 <u>4</u>	$+0.2_{\scriptscriptstyle \rm BL}$	2
	Entrenchment//floodpla ntrenched 0: frequentiflo		10 ¹¹ 45 14 14 14 14 14 14 14 14 14 14 14 14 14	0 4	10 ± 2	2
18. Mowerla	Hnesence of adjacent wo nds=0 Harge adjacent we	lands—max points)	$\frac{1}{2} = 0 + 6^{\frac{1}{2} - \frac{1}{2}}$	40-44	10 2 2 16 12 10 2 1 2 16 12	3
10 (extensived	Charnel sinnosii hannelizavon 10. matural i	meander = max points)	1 10 - 5	0.420.1	0.3	1
	Sedimenkinput Lepesinen 10 Alidle orsiös	adiment amaxipoints)	10.10.5	0.70 2354	indian Appendix	5
" Visit of Camerina	eXX diversity of channell rogenous = 0 Marge divers	esizes – (maxipoints) (c	Programmer The	0.24	10) – 5	
112 Karan (deeply)	idence of channeluncision incised = 0, stable bedt&b	anks =max points) 🦠	3 . 10 = 5	#10-#4#	0 = 5	2
13 (Severento	Presence of major bank sion = 10 mo erosion stable	banks = max points).	×10,-35	1 0-5	0=5	
	Root depth and density roots =0; dense roots thro	ughout = max points)		10 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	505 51	3
The state of the s	agriculture, livestock or antial impact =0 no eviden	ce—smax points)	340-5 3441	31 340 - 54 (433) (2)	F 0 = 15	2
1'6 (no niffles/ii	ence:ofmiffle-pool/nipple- pples or pools =0;:well-de	veloped = max points)	1023	10±5	10-6	0
	Habitat.complexi abitat =0; frequent, varied Canopy.coverage over st	habitats = max points	j≢ija uO⊸6 yali k	10-46	0,-16	1
	vegetation = 0; continuous Substrate embedded	canopy - max points)	THE STREET, ST	10 <u>-5</u> 5	10=5	2
Saltoners Statement Control	ply embedded = 0; loose st ence of stream invertebra	ructure = max)	NA*	50 - 4 bit of a large	1.4 1.4	
20 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ce=0, common numerous *Presence of amphib	types = max points)		0-25	30 ± 5	
C. C. D. Constitution of the contract of the c	ce = 0; common, numerous Presence of fish	types = max points)	10-4	10 44 + 45 to 10 t		1
A SAME CONTRACTOR OF THE PARTY	ce = 0, common, numerous Evidence of wildlife	types = max points)	0-4	0 -42 - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	-10 - 4 start - 1 - 1 - 1	
23 (no evi	dence = 0; abundant evider		0-6	05	0-5	Messy of Estate Miles
	Total Points Possible		100	100	100	
* The state of the	re not assessed in coastal st	RE (also enter on	first page)	network of a suffernet temporal	erichen eren. Gelegen er eren.	42

^{*} These characteristics are not assessed in coastal streams.

USACE AID#	DWQ #	Site #	(indicate on attached map

STREAM QUALITY ASSESSMENT WORKSHEET

Provide the following information for the stream reach und	ler assessment:			
1. Applicant's name: NCTXT	2. Evaluator's name:			
3. Date of evaluation: 317/6/	4. Time of evaluation: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
5. Name of stream: Ut to Stuke Victoria. 6. River basin: White Oct. 7. Approximate drainage area: Site 53 8. Stream order: 1				
11. Site coordinates (if known):	12. Subdivision name (if any):			
13. Location of reach under evaluation (note nearby roads and	landmarks and attach map identifying stream(s) location):			
14. Proposed channel work (if any): Sage Tail	Ditch			
	24 his			
16. Site conditions at time of visit:				
17. Identify any special waterway classifications known:	Section 10Tidal WatersEssential Fisheries Habitat			
Trout WatersOutstanding Resource Waters	Nutrient Sensitive WatersWater Supply Watershed(I-IV)			
18. Is there a pond or lake located upstream of the evaluation po	oint? YES NO If yes, estimate the water surface area:			
19. Does channel appear on USGS quad map? YES NO	20. Does channel appear on USDA Soil Survey? YES NO			
21. Estimated watershed land use:% Residential	% Commercial % Industrial % Agricultural			
% Forested	% Cleared / Logged% Other ()			
22. Bankfull width: 6 C+	23. Bank height (from bed to top of bank):			
	Gentle (2 to 4%)Moderate (4 to 10%)Steep (>10%)			
25. Channel sinuosity:StraightOccasional bends	Frequent meanderVery sinuousBraided channel			
location, terrain, vegetation, stream classification, etc. Every cleach characteristic within the range shown for the ecoregion. Identified in the worksheet. Scores should reflect an overall assibe evaluated due to site or weather conditions, enter 0 in the softhere are obvious changes in the character of a stream under revibe divided into smaller reaches that display more continuity, and to a stream reach must range between 0 and 100, with a score of				
Total Score (from reverse): 29 Commen	its: Internitrant			
Evaluator's Signature Mu My	Date 3/17/154			
This channel evaluation form is intended to be used only a gathering the data required by the United States Army	Date 3/17/by as a guide to assist landowners and environmental professionals in Corps of Engineers to make a preliminary assessment of stream of this form is subject to USACE approval and does not imply a			

particular mitigation ratio or requirement. Form subject to change – version 06/03. To Comment, please call 919-876-8441 x 26.

	GHARACTERISTICS 44	ÆCOREC «Constal	CION ROINT RANGE Pliedmont Mountain	SCORE
	sence of flow / persistent pools in str wor saturation = 0, strong flow = max		(0.24)	
(extens	EFwidence of past human alteration we alteration = 0, no alteration = max	points) 0 6°	0-5. 1-0-5	1
	Riparian zone fer 10 contiguous, widefbuffer anax dence of nutrient or chemical discha	rain with the Constitution and the	20-4 324 20-35	3
	ve discharges = 0, no discharges = max Groundwater discharge			72
	ge = 0, springs, seeps, wetlands, etc. = Rresence of adjacent floodplain	max points);	30-4 30-4 30-4 30-2	
	dplain = 0 sextensive floodplain = amax Fatrenchment/floodplain access	cpoints) # ### ##############################	+ 10 - 41 - 1 - 10 - 2	0
According that well will be a	ntrenched = 0; frequent flooding = ma Presence of adjacent wellands inds = 0; large adjacent wellands = ma	The part of the pa	0-4	6
London Atlanta	Channel sinnosity Shannel ization = 40; natural meander = 1		30 21 FT ST 10 3	
			1 4 5 0 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Î
(fine hot	el&Hiversitytopchanneltbedisubstra ingenous = Dillarge diverse sizes = ima illence of channel incision or wideni	expoints)1.	300000000000000000000000000000000000000	
Z CLA Mideeply	incised 0 stable bed& banks max Presence of major bank failunes	points)	1 = 10 = 44 k	2
	sion=0; no erosion stable banks—m Root depth and density on banks.	Capping Company and Capping Company	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7
The state of the s	roots 0; dense roots abroughout im agmiculture, livestock or timber p	axpoints)	(0) = 4 (0) = 5	7
in a series of Presi	antial impact =0; no evidence = max p encegofriffle-pool/ripple-pool compl pples or pools =0; well-developed =r	exes and the second sec	- 40-5 ;	7
	Habitaticomplexity pabitat = 0; frequent, varied habitats = -		0-6,2 10-6	\
18 (noishading	Canopy coverage over streambed wegetation = 0; continuous canopy = n	naxipoints) #0-5.44	1025144 1025	2
Dword Time Time Time Time Time Time Time Time	Substrate embeddedness ply embedded = 0; loose structure = m ence of stream invertebrates (see pag	AMARIA SANGE DISERSES OF CALLED	10-4 m-11 50-4	
(no eviden	ce = 0; common, mumerous types = ma Presence of amphibians	expoints)	0-35	2
A STATE OF THE PROPERTY OF THE	ce = 0; common, numerous types = ma Presence of fish	The second secon	0-4 0-4	2
23	ce = 10; common, numerous types = ma Evidence of wildlife use	ix points)	0-5 0-5	
(no evi	dence = 0; abundant evidence = max p Total Points Possible	oints) 100	100 100	Contract Con
* These characteristics are not assessed in coastal streams				

^{*} These characteristics are not assessed in coastal streams.

TECHNICAL MEMORANDUM DITCH IMPACT STUDY

US 17

ONSLOW COUNTY, NORTH CAROLINA
TRAFFIC IMPROVEMENT PROJECT (TIP) NO. R-2514A

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION

PROJECT DEVELOPMENT AND ENVIRONMENTAL ANALYSIS BRANCH

RALEIGH, NORTH CAROLINA

TABLE OF CONTENTS

1.0 INTRODUCTION
2.0 METHODS3Model Descriptions3Model Application3
3.0 RESULTS and CONCLUSIONs
LIST OF FIGURES
Figure 1. Site Location
Figure 2a. Proposed Impact of Project Ditch at Site 6 on Adjacent Wetlands (5% of Growing Season)
Figure 2b. Proposed Impact of Project Ditch at Site 6 on Adjacent Wetlands (12.5% of Growing Season)
Figure 2c. Proposed Impact of Project Ditch at Site 12 on Adjacent Wetlands (5% of Growing Season)
Figure 2d. Proposed Impact of Project Ditch at Site 12 on Adjacent Wetlands (12.5% of Growing Season)
Figure 2e. Proposed Impact of Project Ditch on at Site 13 Adjacent (5% of Growing Season).12 Figure 2f. Proposed Impact of Project Ditch on at Site 13 Adjacent (12.5% of Growing Season)13 Figure 2g. Proposed Impact of Project Ditch at Site 39 on Adjacent Wetlands (5% of Growing Season)
Figure 2h. Proposed Impact of Project Ditch at Site 39 on Adjacent Wetlands (12.5% of Growing Season)
LIST OF TABLES
Table 1. Results for 5% of the Growing Season 6. Capture 12.5% of the Growing Season 6. Capture

TECHNICAL MEMORANDUM

DITCH IMPACT STUDY US 17 WIDENING (R-2514A) ONSLOW COUNTY, NORTH CAROLINA

1.0 INTRODUCTION

The North Carolina Department of Transportation (NCDOT) is proposing to widen US 17 into a multilane facility in Onslow and Jones Counties, North Carolina. The improvements to US 17 are anticipated to occur from SR 1327/SR 1410 to SR 1330/SR 1439 north of Jacksonville, North Carolina. The total length of the R-2514A project extends 15.8 miles. The current study, which is focused on 4 locations (Site 6, Station 107+80 to 109+20; Site 12, Station 114+60 to 115+00; Site 13, Station 118+00 to 119+60; Site 39, station 163+40 to Station 166+40), has been undertaken to evaluate the drainage impact caused by special ditches (hereafter referred to as the "project ditches") constructed adjacent to the proposed, widened facility. The results of this modeling effort will be used to determine the amount of wetlands that will be permanently impacted by the project ditches through impacts to the wetland hydroperiod. This impact will be considered cumulative with other filling, excavation, and mechanized clearing activities within jurisdictional areas and is expected to be considered in the Section 404 and Section 401 permit applications. EcoScience Corporation (ESC) has been retained to estimate the drainage influence of the project ditches, as well as determine the amount of jurisdictional wetlands that will be impacted due to these drainage influences. The station numbers, locations and details of the ditches were provided by NCDOT to ESC personnel. The drainage impacts estimated by ESC will be interpreted by NCDOT and included in the Section 404 permit application.

Specifically, the goal of this study is to compare the output of two models to estimate the linear distance from the edge of the project ditch where the potential exists for drainage impacts to occur within jurisdictional wetlands. As requested by NCDOT, results from the Boussinesq Equation were compared to results generated by the hydraulic model DRAINMOD.

¹Special ditches generally parallel the road corridor and are designed to induce a groundwater withdrawal gradient within adjacent fill material. The withdrawal gradient is intended to protect the roadway's substrate from underlying water.

2.0 METHODS

MODEL DESCRIPTIONS

The Boussinesq Equation represents a two dimensional general flow equation for unconfined aquifers. The equation has been applied in the past to predict the decline in elevation of the water table near a pumping well as time progresses. The equation is based primarily on hydraulic conductivity, drainable porosity, and the saturated thickness of the aquifer. One form of the equation is as follows:

$$X = (K h_0 t/f)^{\frac{1}{2}} / F(D,H)$$

Where:

K = hydraulic conductivity (in/hr)

 h_0 = depth to aquiclude (in)

t = duration (hours)

f = drainable porosity (dimensionless ratio)

F(D,H) = profiles (graphs) relating ditch depth, water table depth, and depth to the aquiclude(h_0)

X = wetland impact distance (in)

DRAINMOD was originally developed to simulate the performance of agricultural drainage and water table control systems on sites with shallow water table conditions. DRAINMOD predicts water balances in the soil-water regime at the midpoint between two drains of equal elevation. The model is capable of calculating hourly values for water table depth, surface runoff, subsurface drainage, infiltration, and actual evapotranspiration over long periods referenced to measured climatological data. The reliability of DRAINMOD has been tested for a wide range of soil, crop, and climatological conditions. Results of tests in North Carolina (Skaggs, 1982), Ohio (Skaggs *et al.* 1981), Louisiana (Gayle *et al.* 1985; Fouss *et al.* 1987), Florida (Rogers 1985), Michigan (Belcher and Merva 1987), and Belgium (Susanto *et al.* 1987) indicate that the model can be used to reliably predict water table elevations and drain flow rates. DRAINMOD has also been used to evaluate wetland hydrology by Skaggs *et al.* (1993). Methods for evaluating water balance equations and equation variables are discussed in detail in Skaggs (1980).

DRAINMOD was modified for application in wetland studies by adding a counter that accumulates the number of events wherein the water table rises above a specified depth and remains above that threshold depth for a given duration during the growing season. Important inputs into the DRAINMOD model include rainfall data, soil and surface storage parameters, evapotranspiration rates, ditch depth and spacing, and hydraulic conductivity values.

MODEL APPLICATION

In this study, the Boussinesq Equation was applied to ditches in the study to predict where the linear distance of a drawdown in the groundwater exceeds 1 foot for 5- and 12.5-percent of the growing season. These percentages were selected based upon guidance from the U.S. Army Corps of Engineers Wetland Delineation Manual (DOA 1987). The equation is solved for the wetland impact distance with data for the following variables: 1) equivalent hydraulic conductivity; 2) drainable porosity; 3) an estimated depth to the aquiclude; 4) the time duration of the drawdown; 5) target water table depth (1 foot below the soil surface); and 6) average ditch depth.

The dominant soil types along the project ditches were determined based upon the Onslow County soil survey (USDA 1992) then verified in the field. The Rains series consists of poorly drained soils on uplands, formed in moderately fine textured sediments with slopes less than 2 percent. The Goldsboro series consists of moderately well drained soils, moderately fine textured with slopes ranging from 0 to 2 percent. Equivalent hydraulic conductivity (K) was estimated by calculating a weighted average of published conductivity data (Skaggs et al. 1986). Field measured saturated hydraulic conductivity for the Rains series, cross referenced with values provided by the Natural Resources Conservation Service (NRCS) Map Unit User Files (MUUF) computer model (Baumer et al. 1994), were used to verify the published values (Skaggs et al. 1986). The soil layer depths were obtained from descriptions in the Onslow County soil survey then verified in the field. For each of the soils, drainable porosity was calculated using the water depth to drained-volume relationship provided by MUUF. The drainable porosities were cross-referenced with published data (Skaggs et al. 1986) for depths between 0 and 1 foot for the Rains and Goldsboro series. The depth to the mid- to lower portions of each soils' Bt layer were estimated to mark the beginning of the restrictive layer, or the depth to aquiclude, because no abrupt increase in clay percentage could be determined in the field (He et al. 2002). The depth to aquiclude was then correlated to published values for both the Rains and Goldsboro series (Skaggs et al. 1986).

The time variable, t, is based on a 5- and 12.5-percent of the Onslow County growing season, 11 and 27 days respectively. For the purpose of this study, the growing season is defined as the period between April 8 and November 5 (USDA 1992). Values for the function F(D,H), defined as a function of ditch depth, water table depth, and depth to the aquiclude, were taken from plotted numerical solutions to the Boussinesq Equation (Skaggs 1976), where $D=d / h_0$ and $H=h/h_0$. The variable d is defined as the ditch elevation above aquiclude. The variable h is equal to the height after drawdown for the water above the aquiclude at distance X from the ditch. For the purposes of this analysis, h was defined as the distance between the aquiclude and a point 1 foot below the surface, or 43 inches. The variable h_0 is the distance from the surface to the aquiclude or 55 inches. Therefore, H for each site was determined to be 0.78. Average ditch depths at each site were provided by NCDOT.

DRAINMOD was used to model the zone of wetland loss resulting from the addition of the project ditches. This zone was derived by determining the threshold drain spacing of parallel ditches that would result in the area adjacent to the ditches meeting the wetland hydrology criterion in just over half of the years simulated. Ditches spaced any closer than this threshold distance would result in the entire area between the ditches experiencing a loss of wetland hydrology. If ditches were spaced any further apart than the threshold distance, there would be a strip between the ditches which would still meet the wetland hydrology criteria. Since only one ditch exists, areas outside of half of the threshold distance are predicted to have wetland hydrology. Therefore half of this threshold spacing provides a safe-side estimate of the drainage effect that the project ditch will have. This application of the model recognizes that the water table midway between ditches spaced at the threshold spacing will be lower (i.e., the soil at that point will be drier) than would be the case at the same distance from a single ditch (i.e., at a distance of one-half the threshold spacing from a single ditch). A second ditch parallel to a project ditch at the threshold distance would cut off seepage from the zone beyond the threshold distance and permit greater water table drawdown at the midpoint than would occur if this second ditch were not there. Therefore the width of the strip of land that would experience

hydrologic conversion from wetland to upland hydraulic conditions would be less than a distance equal to one-half the threshold spacings. One-half the threshold spacing is the ditch effect reported in Tables 1 and 2.

Wetland hydrology is defined for DRAINMOD as groundwater within 12 inches of the ground surface for 11 (5-percent) and 27 (12.5-percent) consecutive days during the growing season. Wetland hydrology is achieved in the model if target hydroperiods are met for one half of the years modeled (i.e. 23 out of 45 years). Additional inputs for soil parameters and relationships derived from soil water characteristic data such as the water table depth/volume drained/upflux relationship, Green-ampt parameters, and the water content/matric suction relationship were obtained from NRCS data utilizing the MUUF computer program for the Goldsboro soil series and from published values (Skaggs et al. 1986) for the Rains series. Hydraulic conductivities and ditch depth were calculated as described above. Surface depressional storage was estimated from published ranges (Skaggs et al. 1994 and Skaggs 1980) after visiting the sites. Drainage coefficients for the ditches were calculated based on NCDOT ditch details, design plans, and formulas provided with DRAINMOD. Weather data for a 45-year period was obtained for the New Bern airport. Missing measurements were estimated from data for the same date in the previous year. Potential evapotranspiration rates were calculated based on Thornthwaite's method and adjusted using monthly factors derived from more reliable average values for crop evapotranspiration known from Washington County. The DRAINMOD simulation was conducted for the time period from 1949 through 1993.

3.0 RESULTS AND CONCLUSIONS

Both the Boussinesq Equation and DRAINMOD have an ability to support different ditch morphology and features, suggesting that use of these methods in evaluation of drainage impacts from highway ditches is applicable with proper data inputs that fully reflect the differences between highway ditches and agricultural ditches. Performing a comparison of output from both methods is recommended because output can be considered to predict the lower and upper limits of a range of drainage influence that is likely to occur in real world conditions. The results are presented in Tables 1 and 2.

The largest range of lateral ditch influences was predicted for Site 6 at 12.5 percent of the growing season (120.2 to 992.5 feet; Table 2). Site 6 is the only site characterized by Goldsboro soils, which is a moderately well drained soil as compared to the Rains soil series. Drier sites are expected to exhibit a larger DRAINMOD threshold spacing due to more rapid drainage as compared to sites with a poorer drained soil, and even the smallest change can potentially reduce the likelihood of a drier site from staying saturated for extended periods of time (27 days in this case). When the saturation period is reduced (such as 5 percent of the growing season), the reported values between Boussinesq Equation and DRAINMOD are very similar (73.8 to 39.8 feet, a 20-foot difference; Table 1) lending increased confidence in reported values for this growing season period.

The range of influence was relatively narrower for the poorly drained Rains series when comparing results from the Boussinesq Equation and DRAINMOD. Differences between the two methods ranged from 3.1 to 9 feet for 5 percent of the growing season and 23.8 to 34 feet for 12.5 percent of the growing season at individual Rains soil sites (Tables 1 and 2). The range of lateral influence at all Rains soil sites varied from 25.4 to 90.2 feet. Ditch depth does exhibit

Table 1. Results for 5% of the Growing Season

				Γ-	T-
DRAINMOD Maximum Drainage Impact (ft)	0	80.8	34.4	41.0	45.5
Boussinesq Drainage Impact (ft)	7.37	7.07	25.4	36.3	42.4
F(D,H)	1.0	4: 0	7.0	1.4	1.2
۵	0.40	24.0	0.0	0.58	0.49
Ditch Elevation Above Aquiclude, d	27	37	5	32	27
Average Ditch Depth (ft)	2.3	7	2	1.9	2.3
Drainable Porosity, f	0.03092	0.053	0000	0.053	0.053
Average Lateral Hydraulic Conductivity (in/hour)	2.6	1.36	100	1.30	1.36
Primary Soil Type	Goldsboro	Rains	Daine	IVallis	Rains
Site Number	ဖ	12	13	2 6	36

Table 2. Results for 12.5% of the Growing Season

Primary Soil Average Ditch Elevation Ditch Elevation Drainage DR Type Lateral Porosity, Ditch Elevation Drainage Ms Hydraulic f Depth Above Impact Drainage Conductivity (ft) Aquiclude, d (ft) (ft) (in) Goldsboro 2.6 0.03092 2.3 27 0.49 1.2 120.2 Rains 1.36 0.053 1.5 37 0.67 2.0 39.8 Rains 1.36 0.053 1.9 32 0.58 1.4 56.9					
Primary Soil Average Drainable Average Ditch Elevation D F(D,H) Type Lateral Porosity, Ditch Elevation Depth Above Hydraulic (ft) Aquiclude, d (in) (in) Goldsboro 2.6 0.03092 2.3 27 0.49 1.2 Rains 1.36 0.053 1.5 37 0.67 2.0 Rains 1.36 0.053 1.9 32 0.58 1.4 Rains 1.36 0.053 1.9 2.058 1.4	DRAINMOD Maximum Drainage Impact (ft)	900	73.8	23.0	90.5
Primary Soil Average Drainable Average Ditch Elevation Ditch Dit	Boussinesq Drainage Impact (ft)	120.2	30.8	56.9	66.4
Primary Soil Average Drainable Average Ditch Elevation Type Lateral Porosity, Ditch Elevation Hydraulic f Depth Above Hydraulic (ft) Aquiclude, d Conductivity (in) (in) Goldsboro 2.6 0.03092 2.3 27 Rains 1.36 0.053 1.5 37 Rains 1.36 0.053 1.9 32 Rains 1.36 0.053 1.9 32	F(D,H)	1.0	2.0	1.5	1.2
Primary Soil Average Drainable Average Type Lateral Porosity, Ditch Hydraulic f Depth Conductivity (in/hour) (ft) Goldsboro 2.6 0.03092 2.3 Rains 1.36 0.053 1.5 Rains 1.36 0.053 1.9 Rains 1.36 0.053 1.9	۵	0.49	0.67	0.58	0.49
Primary Soil Average Drainable Average Type Lateral Porosity, processity, point of the processity of t	Ditch Elevation Above Aquiclude, d	27	37	32	27
Primary Soil Average Drainable Type Lateral Porosity, Hydraulic Conductivity (in/hour) Goldsboro 2.6 0.03092 Rains 1.36 0.053 Rains 1.36 0.053		2.3	1.5	1.9	2.3
Site Primary Soil Average Lateral Hydraulic Conductivity (in/hour) 6 Goldsboro 2.6 12 Rains 1.36 13 Rains 1.36	able sity,	0.03092	0.053	0.053	0.053
Site Primary Soil Imber Type G Goldsboro Rains Rains Rains	Average Lateral Hydraulic Conductivity (in/hour)	2.6	1.36	1.36	1.36
Site amber 12 13 13 39	Primary Soil Type	Goldsboro	Rains	Rains	Rains
ž	Site Number	9	12	13	39

an influence on the zone of lateral hydrologic influence at Rains soil sites. Impacts increase from 11.1 to 26.6 feet when ditch depths increase by 0.8 feet (from 1.5 feet to 2.3 feet in depth), depending on the growing season and the modeling method employed.

This application of the Boussinesq Equation includes several simplifying assumptions. The equation does not consider the fluctuation of the water table (hydroperiod) from evapotranspiration (ET) and precipitation due to site specific weather. Additionally, the Boussinesq Equation requires that different lateral hydraulic conductivities (K) for separate soil layers be combined to one weighted average for use in the equation. Likewise the equation also assumes a constant drainable porosity (f). Drainable porosity and saturated hydraulic conductivity are more realistically considered a function of hydraulic head which varies vertically.

DRAINMOD more fully assesses wetland hydroperiods. DRAINMOD considers variability in rainfall, evapotranspiration, hydraulic conductivities, drainable porosity and other hydrologic parameters. DRAINMOD simulations predict the ditch spacing required to lower the water table below 12 inches of the surface for 5- to 12.5-percent of the growing season. As discussed earlier, this spacing is a safe-side estimate of the effect of a single ditch. These results suggest that actual impacts to the wetland hydroperiod will be less than the values reported in Tables 1 and 2. Results are graphically shown in Figures 2A through 2H

In summary, two different methods were used to simulate the drainage impact of the special ditches on the wetland hydroperiod within jurisdictional systems adjacent to US 17 in Onslow County. The Boussinesq Equation and DRAINMOD model were utilized to predict the lateral extent of the ditch impact on ground or surface water within one foot of the land surface for various jurisdictional thresholds (*i.e.* 5- or 12.5-percent of the growing season). The predicted lateral effects for each ditch reported indicate the probable range of potential impacts. The predicted lateral effects for the ditches range from 25.4 to 992.5 feet.

8.15

Pigure Name
Site 12
Ditch Influence
Predictions
5% of the
Growing Season

District Studenting

North Carolina

8

Display Nidening

Ditch Influence Predictions 5% of the Growing Seasor

8

US-17 Wildening

Predictions 12.5% of the Growing Seasor

24	8	

8

4.0 REFERENCES

- Baumer, O. et al. 1994. MUUF v2.14 Users Manual. Natural Resource Conservation Service.
- Belcher, H.W. and G.E. Merva. 1987. Results of DRAINMOD verification study for Zeigenfuss soil and Michigan climate. ASAE Paper No. 87-2554. ASAE, St. Joseph, MI 49085.
- Fouss, J.L., R.L. Bengtson and C.E. Carter. 1987. Simulating subsurface drainage in the lower Mississippi Valley with DRAINMOD. Transactions of the ASAE 30 (6).(1679 -1688).
- Gayle, G., R.W. Skaggs and C.E. Carter. 1985. Evaluation of a water management model for a Louisiana sugar cane field. J. of Am. Soc. of Sugar Cane Technologists, 4: 18 28.
- He, X., M. J. Vepraskas, R. W. Skaggs, and D. L. Lindbo 2002. Adapting a Drainage Model to Simulate Water Table Levels in Coastal Plain Soils. Soil Sci. Soc. Am. J. 66: 1722-1731
- Rogers, J.S. 1985. Water management model evaluation for shallow sandy soils. Transactions of the ASAE 28 (3): 785-790.
- Skaggs, R. W. 1976. Determination of the hydraulic conductivity-drainable porosity ratio from water table measurements. Transactions of the ASAE 19(1): 73-80.
- Skaggs, R.W. 1980. Drainmod Reference Report. Methods for Design and Evaluation of Drainage Water Management Systems for Soils with High Water Tables. Prepared for the U.S. Department of Agriculture. South National Technical Center. Fort Worth, Texas.
- Skaggs, R.W., N.R. Fausey and B.H. Nolte. 1981. Water management evaluation for North Central Ohio. Transactions of the ASAE 24 (4): 922 928.
- Skaggs, R.W. 1982. Field evaluation of a water management simulation model. Transactions of the ASAE 25 (3): 666 674.
- Skaggs, R. W., and A. Tabrizi. 1986. Design drainage rates for estimating drain spacings in North Carolina. Transactions of the ASAE 29(6):1631-1640.
- Skaggs, R.W., et al. 1993. Methods for Evaluating Wetland Hydrology. ASAE meeting presentation Paper No. 921590. 21 p.
- Skaggs, R.W., D. Amatya, R.O Evans and J.E. Parsons. 1994. Characterizations and evaluation of proposed hydrologic criteria for wetlands. Journal of Soil and Water Conservation 49 (5): 501 510.
- Susanto, R.H., J. Feyen, W. Dierickx and G. Wyseure. 1987. The use of simulation models to evaluate the performance of subsurface drainage systems. Proc. of Third International Drainage Workshop, Ohio State Univ., pp. A67 A76.
- U.S. Department of Agriculture (USDA). 1992. Soil Survey of Onslow County, North Carolina. Natural Resource Conservation Service.

U.S. Department of Agriculture (USDA). 1971. Natural Resource Conservation Service National Engineering Handbook. Section 6.0: Drainage of Agricultural Land. Equation 4-8, and Pages 4-57 to 4-69. NRCS.

STATE OF NORTH CAROLINA DIVISION OF HIGHWAYS

PLAN FOR PROPOSED
HIGHWAY EROSION CONTROL

PLANS ARE IN METERS UNLESS OTHERWISE SHOWN

METRIC

ALL DIMENSIONS IN THESE

STATE	STATE PROJECT REFERENCE NO.		NO.	SHEETS	
N.C.	F	?-2514A	EC-1		
STATE	PROJ. NO.	F. A. PROJ. NO.	DESCRIP	DESCRIPTION	
· · · · · · · · · · · · · · · · · · ·					
			 		
			-		

ONSLOW COUNTY

LOCATION: US 17 NORTH OF JACKSONVILLE FROM
SR 1327 /SR 1410 TO SR 1330 /SR 1439 SOUTH OF BELGRADE
TYPE OF WORK: WIDENING, GRADING, DRAINAGE, PAVING
CULVERTS, STRUCTURES AND SIGNING

EROSION AND SEDIMENT CONTROL MEASURES

Sed. #	Description Symbol
	Referentation
1630.03	Temporary Silt Ditch
1630.05	Temporary Diversion
1605.01	Temporary Silt Fence
1606.01	Special Sediment Control Fence
1622.01	Temperary Berms and Slope Drains
1630.01	Risor Basin
1630.02	Silt Basin Type B
1633.01	Temporary Rock Silt Check Type-A
1633.02	Temporary Rock Silt Check Type-B
1634.01	Tamparan Rock Saliment Dam Trace A
1634.02	Temporary Rock Sediment Dam Type-B.
1635.01	Nock Libe injet Segiment Lab Abe.W
1635.02	Rock Pipe Inlet Sediment Trap Type-B
1636.01	Rock Silt Screen
1630.04	Stilling Basin
	Rock Inlet Sediment Tran:
1632.01	$T_{Jpo} A \longrightarrow A \square - OR - A$
1632.02	Type B B ORB)
1632.03	Т _{уро} С

THIS PROJECT CONTAINS
EROSION CONTROL PLANS
FOR CLEARING AND
GRUBBING PHASE OF
CONSTRUCTION.

ENVIRONMENTALLY SENSITIVE AREA(S) EXIST ON THIS PROJECT

Refer To B. C. Special Provisions for Special Considerations.

GRAPHIC SCALE

PLANS

PROFILE (HORIZONTAL)

PROFILE (VERTICAL)

ROADSIDE ENVIRONMENTAL UNIT DIVISION OF HIGHWAYS STATE OF NORTH CAROLINA

ROADSIDE ENVIRONMENTAL UNIT

1 South Wilmington St. Ralaigh, NC 27611

Prepared in the Office of:

2002 STANDARD SPECIFICATIONS

Roadway Standard Drawin

The following roadway <u>metric</u> standards as appear in "Roadway Standard Drawings"—Roadway Desig Unit — N. C. Department of Transportation — Raisigh, N. C., deted January, 2002 and the latest revison thereto are applicable to this project and by reference hereby are considered a part of these plans.

1608.01 Temporary Sik Fence
1608.01 Special Sediment Control Fence
1632.01 Temporary Berms and Slope Drains
1630.02 Sik Basin Type B
1630.03 Temporary Sit Diroh
1630.04 Stilling Basin
Temporary Diversion

1632.03 Rock Inlet Sediment Trap Type C
1633.01 Temporary Rock Six Check Type A
1633.02 Temporary Rock Six Check Type B
1634.02 Temporary Rock Sediment Dam Type
1635.01 Rock Pips Inlet Sediment Trap Type A

PROJ. REFERENCE NO.		SHEET NO	•	TOTAL	SHEETS
R-2514A		BC-2			
STATE PROJECT NO.	F.A.	PROJ. NO.		ESCRIP	TION
			-		
			- 1		

TEMPORARY GRAVEL CONSTRUCTION ENTRANCE

- I. TURNING RADIUS SUFFICIENT TO ACCOMODATE LARGE TRUCKS SHALL BE PROVIDED.
- 2. ENTRANCE(S) SHOULD BE LOCATED TO PROVIDE FOR UTILIZATION BY ALL CONSTRUCTION VEHICLES.
- 3. MUST BE MAINTAINED IN A CONDITION WHICH WILL PREVENT TRACKING OR DIRECT FLOW OF MUD ONTO STREETS. PERIODIC TOPDRESSING WITH STONE WILL BE NECESSARY.
- 4. ANY MATERIAL TRACKED ONTO THE ROADWAY MUST BE CLEANED UP IMMEDIATELY.
- 5. GRAVEL CONSTRUCTION ENTRANCE SHALL BE LOCATED AT ALL POINTS OF INGRESS AND EGRESS UNTIL SITE IS STABILIZED. FREQUENT CHECKS OF THE DEVICE AND TIMELY MAINTENANCE MUST BE PROVIDED.
- 6. NUMBER AND LOCATION OF CONSTRUCTION ENTRANCES TO BE DETERMINED BY THE ENGINEER

NOTE: FILTER FABRIC TO BE PLACED BENEATH STONE

CULVERT CONSTRUCTION SEQUENCE STA. 112 + 07.7 -L MED-

PROJECT REFERENCE N	10.	SHEET NO.
R-2514A		EC-SCONST. 8
R /W SHEET	NO.	
ROADWAY DESIGN ENGINEER		HYDRAULICS ENGINEER
	R-2514A R /W SHEET ROADWAY DESIGN	R /W SHEET NO.

PHASE I	PHASE II	PHASE III	
1. CONSTRUCT STILLING BASIN 1 (15 M3). 2. CONSTRUCT TEMPORARY CHANNEL CHANGE WITH LINER (0.6M BASE, 2:1 SIDE SLOPES, 0.5M DEPTH) AND IMPERVIOUS DIKE. 3. CONSTRUCT 18M OF 1@2.1M X 2.1M RCBC, HEADWALL, AND WINGWALLS AT INLET. 4. CONSTRUCT UPSTREAM CHANNEL IMPROVEMENTS.	5. REMOVE PHASE I IMPREVIOUS DIKE. 6. DIVERT FLOW THROUGH UPSTREAM CHANNEL IMPROVEMENTS. 7. REMOVE STILLING BASIN 1 AND CONSTRUCT NORTH BOUND LANES, 8. INSTALL TEMPORARY GUARDRAIL AND DIVERT TRAFFIC TO NORTH BOUND LANES,	9. CONSTRUCT STILLING BASIN 2 (16 M3). 10. CONSTRUCT TEMPORARY CHANNEL CHANGE WITH LINER (0.6M BASE, 2:1 SIDE SLOPES, 0.5M DEPTH) AND IMPREVIOUS DIKES. 11. INSTALL 400MM TEMPORARY PIPE 1. 12. REMOVE EDISTING CULVERT. 13. CONSTRUCT FLOOR FOR PHASE III OF 1@2.1M X 2.1M RCBC (APPROXIMATE LENGTH OF 24M). 14. RISTALL 400MM TEMPORARY PIPE 2 AFTER FLOOR CURES. 15. REMOVE 400MM TEMPORARY PIPE 1 AFTER FLOOR CURES. 16. COMPLETE REMAINING SECTION OF 1@2.1M X 2.1M RCBC. 17. DIVERT WATER THROUGH CULVERT. 18. COMPLETE ROADWAY.	

CULVERT CONSTRUCTION SEQUENCE STA. 161 + 33.5 -L MED-

1	PROJECT REFERENCE N	O. SHEET NO.	
MFTRICA	R-2514A	EC-23/CONST,22	
	R /W SHEET NO.		
111	ROADWAY DESIGN ENGINEER	HYDRAULICS Engineer	
5 0 10			
CONST. REV.			
R /W REV.			

		R /W REV.
PHASE I	PHASE II	PHASE III
1. CONSTRUCT STELLING BASIN 1 (AS MS). 2. CONSTRUCT TAME OF AN ACCUMULATION OF THE CONTROL OF T	4. CONSTRUCT INVENTOUS DIESE S AND 400HH TEMPORARY PIPES A 4. EXHAUTE INVENTOUS DIES A AND TEMPORARY PIPES A 5. EXHIBITION OF THE ANALYSIS OF THE CHANGE A 6. EXHIBITION OF THE ANALYSIS OF THE CHANGE A 8. EXHIBITION OF THE COURSE ANALYSIS OF THE CHANGE.	9, CONSTRUCT STILLING, BASIN 2 (45 M3). 10. CONSTRUCT STILLING BASIN 2 (45 M3). 11. CENOTE LCT TEMPOLARY CHANNEL CHANGE WITH LINER B (0.7M BASE, 2:1 SIDE SLOPES, 0.5M DEEP). 11. CENOTE TEMPOLARY FIRS A AND IMPRIVIOUS DRESS. 12. CONSTRUCT SWEETHING DRESS C, AND BASIL 450MM TEMPORARY FIFE B, DIVERTING FLOW 13. SHAWOY EXCENSE CHANNEL SHAWD B AND TEMPORARY FIFE B, AND INSTALL 450MM TEMPORARY FIFE C, 14. COMPLIES CHANNEL CHANNEL CHANNEL SHAWD CHANNEL FIFE B, AND INSTALL 450MM TEMPORARY FIFE C, 15. COMPLIES CONSTRUCTION OF THE FLOYDON CHANNEL FIFE B, AND INSTALL 450MM TEMPORARY FIFE C, 16. COMPLIES CONSTRUCTION OF THE FLOYDON CHANNEL FIFE C. 17. CONSTRUCT DOWNSTREAM CHANNEL IMPORVEMENTS.
TDE STORAGE (45 MS) IMPERVIOUS DIKE A	TOE STANOY OF THE STANOY OF TH	TEMPORARY CHANNEL CHANGE WITH LINER B ASOMM TEMPORARY PIPE B

PLANTING DETAILS

SEEDLING / LINER BAREROOT PLANTING DETAIL

HEALING IN

DIBBLE PLANTING METHOD USING THE KBC PLANTING BAR

PLANTING NOTES:

REFORESTATION

TREE REFORESTATION SHALL BE PLANTED 1.8m TO 3.0m ON CENTER, RANDOM SPACING, AVERAGING 2.5m ON CENTER, APPROXIMATELY 1680 PLANTS PER HECTARE.

REFORESTATION

MIXTURE, TYPE, SIZE, AND FURNISH SHALL CONFORM TO THE FOLLOWING:

25%	PINUS TAEDA	LOBLOLLY PINE	300mm - 460mm BR
25%	LIRIODENDRON TULIPIFERA	TULIP POPLAR	300mm - 460mm BR
25%	QUERCUS PHELLOS	WILLOW OAK	300mm - 460mm BR
25%	QUERCUS LAURIFOLIA	LAUREL OAK	300mm - 460mm BR

REFORESTATION DETAIL SHEET

N.C.D.O.T. - ROADSIDE ENVIRONMENTAL UNIT

PLANTING DETAILS

LIVE STAKES PLANTING DETAIL

BAREROOT PLANTING DETAIL DIBBLE PLANTING METHOD USING THE KBC PLANTING BAR

PLANTING NOTES:

NTING RAG
uring planting, seedlings
all be kept in a molet
ures beg or similar
actioner to prevent the
oct systems from drying.

C PLANTING BAR lanting ber shall have a lade with a triangular rose sestion, and shall a 300mm long, 100mm wide an Summ thick at constre.

ROOT PRUNING
All seedlings shall be root
pruned, if necessary, so that
no roots extend more than
250mm below the
root soller.

- TYPE 1 STREAMBANK REFORESTATION SHALL BE PLANTED 0.9m TO 1.52m ON CENTER, RANDOM SPACING, AVERAGING 1.22m ON CENTER, APPROXIMATELY 6726 PLANTS PER HECTARE.
- TYPE 2 STREAMBANK REFORESTATION SHALL BE PLANTED 1.8m TO 3.0m ON CENTER, RANDOM SPACING, AVERAGING 2.4m ON CENTER, APPROXIMATELY 1680 PLANTS PER HECTARE.
- ☐ NOTE: TYPE 1 AND TYPE 2 STREAMBANK REFORESTATION SHALL BE PAID FOR AS "STREAMBANK REFORESTATION"

STREAMBANK REFORESTATION				
MIXTURE, TYPE, SIZE, AND FURNISH SHALL CONFORM TO THE FOLLOWING:				
TYPE 1				
50% SALIX NIGRA	BLACK WILLOW	0.6m to 1m LIVE STAKES		
50% CORNUS AMOMUM	SILKY DOGWOOD	0.6m to 1m LIVE STAKES		
TYPE 2				
25% LIRIODENDRON TULIPIFERA	TULIP POPLAR	300mm - 460mm BR		
25% QUERCUS PHELLOS	WILLOW OAK	300mm - 460mm BR		
25% QUERCUS LAURIFOLIA	LAUREL OAK	300mm - 460mm BR		
25% QUERCUS NIGRA	WATER OAK	300mm - 460mm BR		

☐ SEE PLAN SHEETS FOR AREAS TO BE PLANTED

STREAMBANK REFORESTATION DETAIL SHEET

N.C.D.O.T. - ROADSIDE ENVIRONMENTAL UNIT